Metamath Proof Explorer


Theorem isumrecl

Description: The sum of a converging infinite real series is a real number. (Contributed by Mario Carneiro, 24-Apr-2014)

Ref Expression
Hypotheses isumrecl.1 Z=M
isumrecl.2 φM
isumrecl.3 φkZFk=A
isumrecl.4 φkZA
isumrecl.5 φseqM+Fdom
Assertion isumrecl φkZA

Proof

Step Hyp Ref Expression
1 isumrecl.1 Z=M
2 isumrecl.2 φM
3 isumrecl.3 φkZFk=A
4 isumrecl.4 φkZA
5 isumrecl.5 φseqM+Fdom
6 4 recnd φkZA
7 1 2 3 6 5 isumclim2 φseqM+FkZA
8 3 4 eqeltrd φkZFk
9 1 2 8 serfre φseqM+F:Z
10 9 ffvelcdmda φjZseqM+Fj
11 1 2 7 10 climrecl φkZA