| Step |
Hyp |
Ref |
Expression |
| 1 |
|
itg10a.1 |
|
| 2 |
|
itg10a.2 |
|
| 3 |
|
itg10a.3 |
|
| 4 |
|
itg1lea.4 |
|
| 5 |
|
itg1lea.5 |
|
| 6 |
|
i1fsub |
|
| 7 |
4 1 6
|
syl2anc |
|
| 8 |
|
eldifi |
|
| 9 |
|
i1ff |
|
| 10 |
4 9
|
syl |
|
| 11 |
10
|
ffvelcdmda |
|
| 12 |
|
i1ff |
|
| 13 |
1 12
|
syl |
|
| 14 |
13
|
ffvelcdmda |
|
| 15 |
11 14
|
subge0d |
|
| 16 |
8 15
|
sylan2 |
|
| 17 |
5 16
|
mpbird |
|
| 18 |
10
|
ffnd |
|
| 19 |
13
|
ffnd |
|
| 20 |
|
reex |
|
| 21 |
20
|
a1i |
|
| 22 |
|
inidm |
|
| 23 |
|
eqidd |
|
| 24 |
|
eqidd |
|
| 25 |
18 19 21 21 22 23 24
|
ofval |
|
| 26 |
8 25
|
sylan2 |
|
| 27 |
17 26
|
breqtrrd |
|
| 28 |
7 2 3 27
|
itg1ge0a |
|
| 29 |
|
itg1sub |
|
| 30 |
4 1 29
|
syl2anc |
|
| 31 |
28 30
|
breqtrd |
|
| 32 |
|
itg1cl |
|
| 33 |
4 32
|
syl |
|
| 34 |
|
itg1cl |
|
| 35 |
1 34
|
syl |
|
| 36 |
33 35
|
subge0d |
|
| 37 |
31 36
|
mpbid |
|