Metamath Proof Explorer


Theorem itg1lea

Description: Approximate version of itg1le . If F <_ G for almost all x , then S.1 F <_ S.1 G . (Contributed by Mario Carneiro, 28-Jun-2014) (Revised by Mario Carneiro, 6-Aug-2014)

Ref Expression
Hypotheses itg10a.1 φFdom1
itg10a.2 φA
itg10a.3 φvol*A=0
itg1lea.4 φGdom1
itg1lea.5 φxAFxGx
Assertion itg1lea φ1F1G

Proof

Step Hyp Ref Expression
1 itg10a.1 φFdom1
2 itg10a.2 φA
3 itg10a.3 φvol*A=0
4 itg1lea.4 φGdom1
5 itg1lea.5 φxAFxGx
6 i1fsub Gdom1Fdom1GfFdom1
7 4 1 6 syl2anc φGfFdom1
8 eldifi xAx
9 i1ff Gdom1G:
10 4 9 syl φG:
11 10 ffvelcdmda φxGx
12 i1ff Fdom1F:
13 1 12 syl φF:
14 13 ffvelcdmda φxFx
15 11 14 subge0d φx0GxFxFxGx
16 8 15 sylan2 φxA0GxFxFxGx
17 5 16 mpbird φxA0GxFx
18 10 ffnd φGFn
19 13 ffnd φFFn
20 reex V
21 20 a1i φV
22 inidm =
23 eqidd φxGx=Gx
24 eqidd φxFx=Fx
25 18 19 21 21 22 23 24 ofval φxGfFx=GxFx
26 8 25 sylan2 φxAGfFx=GxFx
27 17 26 breqtrrd φxA0GfFx
28 7 2 3 27 itg1ge0a φ01GfF
29 itg1sub Gdom1Fdom11GfF=1G1F
30 4 1 29 syl2anc φ1GfF=1G1F
31 28 30 breqtrd φ01G1F
32 itg1cl Gdom11G
33 4 32 syl φ1G
34 itg1cl Fdom11F
35 1 34 syl φ1F
36 33 35 subge0d φ01G1F1F1G
37 31 36 mpbid φ1F1G