Metamath Proof Explorer


Theorem itg1sub

Description: The integral of a difference of two simple functions. (Contributed by Mario Carneiro, 6-Aug-2014)

Ref Expression
Assertion itg1sub Fdom1Gdom11FfG=1F1G

Proof

Step Hyp Ref Expression
1 simpl Fdom1Gdom1Fdom1
2 simpr Fdom1Gdom1Gdom1
3 neg1rr 1
4 3 a1i Fdom1Gdom11
5 2 4 i1fmulc Fdom1Gdom1×1×fGdom1
6 1 5 itg1add Fdom1Gdom11F+f×1×fG=1F+1×1×fG
7 2 4 itg1mulc Fdom1Gdom11×1×fG=-11G
8 itg1cl Gdom11G
9 8 recnd Gdom11G
10 2 9 syl Fdom1Gdom11G
11 10 mulm1d Fdom1Gdom1-11G=1G
12 7 11 eqtrd Fdom1Gdom11×1×fG=1G
13 12 oveq2d Fdom1Gdom11F+1×1×fG=1F+1G
14 6 13 eqtrd Fdom1Gdom11F+f×1×fG=1F+1G
15 reex V
16 i1ff Fdom1F:
17 ax-resscn
18 fss F:F:
19 16 17 18 sylancl Fdom1F:
20 i1ff Gdom1G:
21 fss G:G:
22 20 17 21 sylancl Gdom1G:
23 ofnegsub VF:G:F+f×1×fG=FfG
24 15 19 22 23 mp3an3an Fdom1Gdom1F+f×1×fG=FfG
25 24 fveq2d Fdom1Gdom11F+f×1×fG=1FfG
26 itg1cl Fdom11F
27 26 recnd Fdom11F
28 negsub 1F1G1F+1G=1F1G
29 27 9 28 syl2an Fdom1Gdom11F+1G=1F1G
30 14 25 29 3eqtr3d Fdom1Gdom11FfG=1F1G