Metamath Proof Explorer


Theorem itgoval

Description: Value of the integral-over function. (Contributed by Stefan O'Rear, 27-Nov-2014)

Ref Expression
Assertion itgoval SIntgOverS=x|pPolySpx=0coeffpdegp=1

Proof

Step Hyp Ref Expression
1 cnex V
2 1 elpw2 S𝒫S
3 fveq2 s=SPolys=PolyS
4 3 rexeqdv s=SpPolyspx=0coeffpdegp=1pPolySpx=0coeffpdegp=1
5 4 rabbidv s=Sx|pPolyspx=0coeffpdegp=1=x|pPolySpx=0coeffpdegp=1
6 df-itgo IntgOver=s𝒫x|pPolyspx=0coeffpdegp=1
7 1 rabex x|pPolySpx=0coeffpdegp=1V
8 5 6 7 fvmpt S𝒫IntgOverS=x|pPolySpx=0coeffpdegp=1
9 2 8 sylbir SIntgOverS=x|pPolySpx=0coeffpdegp=1