Metamath Proof Explorer


Theorem itgvallem

Description: Substitution lemma. (Contributed by Mario Carneiro, 7-Jul-2014) (Revised by Mario Carneiro, 23-Aug-2014)

Ref Expression
Hypothesis itgvallem.1 iK=T
Assertion itgvallem k=K2xifxA0BikBik0=2xifxA0BTBT0

Proof

Step Hyp Ref Expression
1 itgvallem.1 iK=T
2 oveq2 k=Kik=iK
3 2 1 eqtrdi k=Kik=T
4 3 oveq2d k=KBik=BT
5 4 fveq2d k=KBik=BT
6 5 breq2d k=K0Bik0BT
7 6 anbi2d k=KxA0BikxA0BT
8 7 5 ifbieq1d k=KifxA0BikBik0=ifxA0BTBT0
9 8 mpteq2dv k=KxifxA0BikBik0=xifxA0BTBT0
10 9 fveq2d k=K2xifxA0BikBik0=2xifxA0BTBT0