Metamath Proof Explorer


Theorem itsclc0lem1

Description: Lemma for theorems about intersections of lines and circles in a real Euclidean space of dimension 2 . (Contributed by AV, 2-May-2023)

Ref Expression
Assertion itsclc0lem1 STUV0VWW0SU+TVW

Proof

Step Hyp Ref Expression
1 remulcl SUSU
2 1 3adant2 STUSU
3 2 adantr STUV0VSU
4 simpl2 STUV0VT
5 resqrtcl V0VV
6 5 adantl STUV0VV
7 4 6 remulcld STUV0VTV
8 3 7 readdcld STUV0VSU+TV
9 8 3adant3 STUV0VWW0SU+TV
10 simp3l STUV0VWW0W
11 simp3r STUV0VWW0W0
12 9 10 11 redivcld STUV0VWW0SU+TVW