Metamath Proof Explorer


Theorem itsclc0lem2

Description: Lemma for theorems about intersections of lines and circles in a real Euclidean space of dimension 2 . (Contributed by AV, 3-May-2023)

Ref Expression
Assertion itsclc0lem2 S T U V 0 V W W 0 S U T V W

Proof

Step Hyp Ref Expression
1 simp1 S T U S
2 simp3 S T U U
3 1 2 remulcld S T U S U
4 3 adantr S T U V 0 V S U
5 simpl2 S T U V 0 V T
6 resqrtcl V 0 V V
7 6 adantl S T U V 0 V V
8 5 7 remulcld S T U V 0 V T V
9 4 8 resubcld S T U V 0 V S U T V
10 9 3adant3 S T U V 0 V W W 0 S U T V
11 simp3l S T U V 0 V W W 0 W
12 simp3r S T U V 0 V W W 0 W 0
13 10 11 12 redivcld S T U V 0 V W W 0 S U T V W