Metamath Proof Explorer


Theorem itsclc0xyqsol

Description: Lemma for itsclc0 . Solutions of the quadratic equations for the coordinates of the intersection points of a (nondegenerate) line and a circle. (Contributed by AV, 25-Feb-2023)

Ref Expression
Hypotheses itscnhlc0yqe.q Q = A 2 + B 2
itsclc0yqsol.d D = R 2 Q C 2
Assertion itsclc0xyqsol A B C A 0 B 0 R + 0 D X Y X 2 + Y 2 = R 2 A X + B Y = C X = A C + B D Q Y = B C A D Q X = A C B D Q Y = B C + A D Q

Proof

Step Hyp Ref Expression
1 itscnhlc0yqe.q Q = A 2 + B 2
2 itsclc0yqsol.d D = R 2 Q C 2
3 1 2 itscnhlc0xyqsol A A 0 B C R + 0 D X Y X 2 + Y 2 = R 2 A X + B Y = C X = A C + B D Q Y = B C A D Q X = A C B D Q Y = B C + A D Q
4 3 3exp A A 0 B C R + 0 D X Y X 2 + Y 2 = R 2 A X + B Y = C X = A C + B D Q Y = B C A D Q X = A C B D Q Y = B C + A D Q
5 4 3exp A A 0 B C R + 0 D X Y X 2 + Y 2 = R 2 A X + B Y = C X = A C + B D Q Y = B C A D Q X = A C B D Q Y = B C + A D Q
6 5 expcom A 0 A B C R + 0 D X Y X 2 + Y 2 = R 2 A X + B Y = C X = A C + B D Q Y = B C A D Q X = A C B D Q Y = B C + A D Q
7 6 3impd A 0 A B C R + 0 D X Y X 2 + Y 2 = R 2 A X + B Y = C X = A C + B D Q Y = B C A D Q X = A C B D Q Y = B C + A D Q
8 nne ¬ A 0 A = 0
9 1 2 itschlc0xyqsol A B C A = 0 B 0 R + 0 D X Y X 2 + Y 2 = R 2 A X + B Y = C X = A C + B D Q Y = B C A D Q X = A C B D Q Y = B C + A D Q
10 9 3exp A B C A = 0 B 0 R + 0 D X Y X 2 + Y 2 = R 2 A X + B Y = C X = A C + B D Q Y = B C A D Q X = A C B D Q Y = B C + A D Q
11 10 expcom A = 0 B 0 A B C R + 0 D X Y X 2 + Y 2 = R 2 A X + B Y = C X = A C + B D Q Y = B C A D Q X = A C B D Q Y = B C + A D Q
12 8 11 sylanb ¬ A 0 B 0 A B C R + 0 D X Y X 2 + Y 2 = R 2 A X + B Y = C X = A C + B D Q Y = B C A D Q X = A C B D Q Y = B C + A D Q
13 7 12 jaoi3 A 0 B 0 A B C R + 0 D X Y X 2 + Y 2 = R 2 A X + B Y = C X = A C + B D Q Y = B C A D Q X = A C B D Q Y = B C + A D Q
14 13 impcom A B C A 0 B 0 R + 0 D X Y X 2 + Y 2 = R 2 A X + B Y = C X = A C + B D Q Y = B C A D Q X = A C B D Q Y = B C + A D Q
15 14 3imp A B C A 0 B 0 R + 0 D X Y X 2 + Y 2 = R 2 A X + B Y = C X = A C + B D Q Y = B C A D Q X = A C B D Q Y = B C + A D Q