| Step |
Hyp |
Ref |
Expression |
| 1 |
|
itscnhlc0yqe.q |
|
| 2 |
|
itsclc0yqsol.d |
|
| 3 |
|
simpl |
|
| 4 |
3
|
3anim1i |
|
| 5 |
|
simpr |
|
| 6 |
5
|
3ad2ant1 |
|
| 7 |
6
|
orcd |
|
| 8 |
4 7
|
jca |
|
| 9 |
8
|
3anim1i |
|
| 10 |
1 2
|
itsclc0yqsol |
|
| 11 |
9 10
|
syl |
|
| 12 |
11
|
imp |
|
| 13 |
|
oveq2 |
|
| 14 |
13
|
oveq2d |
|
| 15 |
14
|
eqeq1d |
|
| 16 |
|
simp12 |
|
| 17 |
16
|
recnd |
|
| 18 |
|
simp13 |
|
| 19 |
18
|
recnd |
|
| 20 |
17 19
|
mulcld |
|
| 21 |
|
simp11l |
|
| 22 |
21
|
recnd |
|
| 23 |
|
rpre |
|
| 24 |
23
|
adantr |
|
| 25 |
24
|
adantl |
|
| 26 |
25
|
resqcld |
|
| 27 |
|
simp1l |
|
| 28 |
|
simp2 |
|
| 29 |
1
|
resum2sqcl |
|
| 30 |
27 28 29
|
syl2anc |
|
| 31 |
30
|
adantr |
|
| 32 |
26 31
|
remulcld |
|
| 33 |
|
simpl3 |
|
| 34 |
33
|
resqcld |
|
| 35 |
32 34
|
resubcld |
|
| 36 |
2 35
|
eqeltrid |
|
| 37 |
36
|
3adant3 |
|
| 38 |
37
|
recnd |
|
| 39 |
38
|
sqrtcld |
|
| 40 |
22 39
|
mulcld |
|
| 41 |
20 40
|
subcld |
|
| 42 |
30
|
3ad2ant1 |
|
| 43 |
42
|
recnd |
|
| 44 |
1
|
resum2sqgt0 |
|
| 45 |
44
|
3adant3 |
|
| 46 |
45
|
gt0ne0d |
|
| 47 |
46
|
3ad2ant1 |
|
| 48 |
17 41 43 47
|
divassd |
|
| 49 |
48
|
eqcomd |
|
| 50 |
49
|
oveq2d |
|
| 51 |
19 43 47
|
divcan3d |
|
| 52 |
51
|
eqcomd |
|
| 53 |
50 52
|
eqeq12d |
|
| 54 |
43 19
|
mulcld |
|
| 55 |
17 41
|
mulcld |
|
| 56 |
54 55 43 47
|
divsubdird |
|
| 57 |
56
|
eqcomd |
|
| 58 |
57
|
eqeq1d |
|
| 59 |
54 43 47
|
divcld |
|
| 60 |
55 43 47
|
divcld |
|
| 61 |
|
simp3l |
|
| 62 |
61
|
recnd |
|
| 63 |
22 62
|
mulcld |
|
| 64 |
59 60 63
|
subadd2d |
|
| 65 |
|
eqcom |
|
| 66 |
65
|
a1i |
|
| 67 |
54 55
|
subcld |
|
| 68 |
67 43 47
|
divcld |
|
| 69 |
|
simp11r |
|
| 70 |
68 62 22 69
|
divmul2d |
|
| 71 |
67 43 22 47 69
|
divdiv1d |
|
| 72 |
71
|
eqeq2d |
|
| 73 |
66 70 72
|
3bitr3d |
|
| 74 |
58 64 73
|
3bitr3d |
|
| 75 |
53 74
|
bitrd |
|
| 76 |
15 75
|
sylan9bbr |
|
| 77 |
1
|
oveq1i |
|
| 78 |
27
|
recnd |
|
| 79 |
78
|
sqcld |
|
| 80 |
28
|
recnd |
|
| 81 |
80
|
sqcld |
|
| 82 |
|
simp3 |
|
| 83 |
82
|
recnd |
|
| 84 |
79 81 83
|
adddird |
|
| 85 |
77 84
|
eqtrid |
|
| 86 |
85
|
adantr |
|
| 87 |
80
|
adantr |
|
| 88 |
33
|
recnd |
|
| 89 |
87 88
|
mulcld |
|
| 90 |
78
|
adantr |
|
| 91 |
36
|
recnd |
|
| 92 |
91
|
sqrtcld |
|
| 93 |
90 92
|
mulcld |
|
| 94 |
87 89 93
|
subdid |
|
| 95 |
80 80 83
|
mulassd |
|
| 96 |
|
recn |
|
| 97 |
96
|
sqvald |
|
| 98 |
97
|
3ad2ant2 |
|
| 99 |
98
|
eqcomd |
|
| 100 |
99
|
oveq1d |
|
| 101 |
95 100
|
eqtr3d |
|
| 102 |
101
|
adantr |
|
| 103 |
87 90 92
|
mul12d |
|
| 104 |
102 103
|
oveq12d |
|
| 105 |
94 104
|
eqtrd |
|
| 106 |
86 105
|
oveq12d |
|
| 107 |
90
|
sqcld |
|
| 108 |
107 88
|
mulcld |
|
| 109 |
87
|
sqcld |
|
| 110 |
109 88
|
mulcld |
|
| 111 |
108 110
|
addcomd |
|
| 112 |
111
|
oveq1d |
|
| 113 |
87 92
|
mulcld |
|
| 114 |
90 113
|
mulcld |
|
| 115 |
110 108 114
|
pnncand |
|
| 116 |
106 112 115
|
3eqtrd |
|
| 117 |
116
|
oveq1d |
|
| 118 |
78
|
sqvald |
|
| 119 |
118
|
oveq1d |
|
| 120 |
78 78 83
|
mulassd |
|
| 121 |
119 120
|
eqtrd |
|
| 122 |
121
|
adantr |
|
| 123 |
122
|
oveq1d |
|
| 124 |
31
|
recnd |
|
| 125 |
124 90
|
mulcomd |
|
| 126 |
123 125
|
oveq12d |
|
| 127 |
90 88
|
mulcld |
|
| 128 |
90 127 113
|
adddid |
|
| 129 |
128
|
eqcomd |
|
| 130 |
129
|
oveq1d |
|
| 131 |
127 113
|
addcld |
|
| 132 |
46
|
adantr |
|
| 133 |
|
simpl1r |
|
| 134 |
131 124 90 132 133
|
divcan5d |
|
| 135 |
130 134
|
eqtrd |
|
| 136 |
117 126 135
|
3eqtrd |
|
| 137 |
136
|
eqeq2d |
|
| 138 |
137
|
biimpd |
|
| 139 |
138
|
3adant3 |
|
| 140 |
139
|
adantr |
|
| 141 |
76 140
|
sylbid |
|
| 142 |
141
|
ex |
|
| 143 |
142
|
com23 |
|
| 144 |
143
|
adantld |
|
| 145 |
144
|
imp |
|
| 146 |
145
|
ancrd |
|
| 147 |
|
oveq2 |
|
| 148 |
147
|
oveq2d |
|
| 149 |
148
|
eqeq1d |
|
| 150 |
20 40
|
addcld |
|
| 151 |
17 150 43 47
|
divassd |
|
| 152 |
151
|
eqcomd |
|
| 153 |
152
|
oveq2d |
|
| 154 |
153 52
|
eqeq12d |
|
| 155 |
17 150
|
mulcld |
|
| 156 |
54 155 43 47
|
divsubdird |
|
| 157 |
156
|
eqcomd |
|
| 158 |
157
|
eqeq1d |
|
| 159 |
155 43 47
|
divcld |
|
| 160 |
59 159 63
|
subadd2d |
|
| 161 |
|
eqcom |
|
| 162 |
161
|
a1i |
|
| 163 |
54 155
|
subcld |
|
| 164 |
163 43 47
|
divcld |
|
| 165 |
164 62 22 69
|
divmul2d |
|
| 166 |
163 43 22 47 69
|
divdiv1d |
|
| 167 |
166
|
eqeq2d |
|
| 168 |
162 165 167
|
3bitr3d |
|
| 169 |
158 160 168
|
3bitr3d |
|
| 170 |
154 169
|
bitrd |
|
| 171 |
149 170
|
sylan9bbr |
|
| 172 |
87 89 93
|
adddid |
|
| 173 |
102 103
|
oveq12d |
|
| 174 |
172 173
|
eqtrd |
|
| 175 |
86 174
|
oveq12d |
|
| 176 |
111
|
oveq1d |
|
| 177 |
110 108 114
|
pnpcand |
|
| 178 |
175 176 177
|
3eqtrd |
|
| 179 |
178
|
oveq1d |
|
| 180 |
122
|
oveq1d |
|
| 181 |
180 125
|
oveq12d |
|
| 182 |
90 127 113
|
subdid |
|
| 183 |
182
|
eqcomd |
|
| 184 |
183
|
oveq1d |
|
| 185 |
127 113
|
subcld |
|
| 186 |
185 124 90 132 133
|
divcan5d |
|
| 187 |
184 186
|
eqtrd |
|
| 188 |
179 181 187
|
3eqtrd |
|
| 189 |
188
|
eqeq2d |
|
| 190 |
189
|
biimpd |
|
| 191 |
190
|
3adant3 |
|
| 192 |
191
|
adantr |
|
| 193 |
171 192
|
sylbid |
|
| 194 |
193
|
ex |
|
| 195 |
194
|
com23 |
|
| 196 |
195
|
adantld |
|
| 197 |
196
|
imp |
|
| 198 |
197
|
ancrd |
|
| 199 |
146 198
|
orim12d |
|
| 200 |
12 199
|
mpd |
|
| 201 |
200
|
ex |
|