Metamath Proof Explorer


Theorem itscnhlc0xyqsol

Description: Lemma for itsclc0 . Solutions of the quadratic equations for the coordinates of the intersection points of a nonhorizontal line and a circle. (Contributed by AV, 8-Feb-2023)

Ref Expression
Hypotheses itscnhlc0yqe.q Q = A 2 + B 2
itsclc0yqsol.d D = R 2 Q C 2
Assertion itscnhlc0xyqsol A A 0 B C R + 0 D X Y X 2 + Y 2 = R 2 A X + B Y = C X = A C + B D Q Y = B C A D Q X = A C B D Q Y = B C + A D Q

Proof

Step Hyp Ref Expression
1 itscnhlc0yqe.q Q = A 2 + B 2
2 itsclc0yqsol.d D = R 2 Q C 2
3 simpl A A 0 A
4 3 3anim1i A A 0 B C A B C
5 simpr A A 0 A 0
6 5 3ad2ant1 A A 0 B C A 0
7 6 orcd A A 0 B C A 0 B 0
8 4 7 jca A A 0 B C A B C A 0 B 0
9 8 3anim1i A A 0 B C R + 0 D X Y A B C A 0 B 0 R + 0 D X Y
10 1 2 itsclc0yqsol A B C A 0 B 0 R + 0 D X Y X 2 + Y 2 = R 2 A X + B Y = C Y = B C A D Q Y = B C + A D Q
11 9 10 syl A A 0 B C R + 0 D X Y X 2 + Y 2 = R 2 A X + B Y = C Y = B C A D Q Y = B C + A D Q
12 11 imp A A 0 B C R + 0 D X Y X 2 + Y 2 = R 2 A X + B Y = C Y = B C A D Q Y = B C + A D Q
13 oveq2 Y = B C A D Q B Y = B B C A D Q
14 13 oveq2d Y = B C A D Q A X + B Y = A X + B B C A D Q
15 14 eqeq1d Y = B C A D Q A X + B Y = C A X + B B C A D Q = C
16 simp12 A A 0 B C R + 0 D X Y B
17 16 recnd A A 0 B C R + 0 D X Y B
18 simp13 A A 0 B C R + 0 D X Y C
19 18 recnd A A 0 B C R + 0 D X Y C
20 17 19 mulcld A A 0 B C R + 0 D X Y B C
21 simp11l A A 0 B C R + 0 D X Y A
22 21 recnd A A 0 B C R + 0 D X Y A
23 rpre R + R
24 23 adantr R + 0 D R
25 24 adantl A A 0 B C R + 0 D R
26 25 resqcld A A 0 B C R + 0 D R 2
27 simp1l A A 0 B C A
28 simp2 A A 0 B C B
29 1 resum2sqcl A B Q
30 27 28 29 syl2anc A A 0 B C Q
31 30 adantr A A 0 B C R + 0 D Q
32 26 31 remulcld A A 0 B C R + 0 D R 2 Q
33 simpl3 A A 0 B C R + 0 D C
34 33 resqcld A A 0 B C R + 0 D C 2
35 32 34 resubcld A A 0 B C R + 0 D R 2 Q C 2
36 2 35 eqeltrid A A 0 B C R + 0 D D
37 36 3adant3 A A 0 B C R + 0 D X Y D
38 37 recnd A A 0 B C R + 0 D X Y D
39 38 sqrtcld A A 0 B C R + 0 D X Y D
40 22 39 mulcld A A 0 B C R + 0 D X Y A D
41 20 40 subcld A A 0 B C R + 0 D X Y B C A D
42 30 3ad2ant1 A A 0 B C R + 0 D X Y Q
43 42 recnd A A 0 B C R + 0 D X Y Q
44 1 resum2sqgt0 A A 0 B 0 < Q
45 44 3adant3 A A 0 B C 0 < Q
46 45 gt0ne0d A A 0 B C Q 0
47 46 3ad2ant1 A A 0 B C R + 0 D X Y Q 0
48 17 41 43 47 divassd A A 0 B C R + 0 D X Y B B C A D Q = B B C A D Q
49 48 eqcomd A A 0 B C R + 0 D X Y B B C A D Q = B B C A D Q
50 49 oveq2d A A 0 B C R + 0 D X Y A X + B B C A D Q = A X + B B C A D Q
51 19 43 47 divcan3d A A 0 B C R + 0 D X Y Q C Q = C
52 51 eqcomd A A 0 B C R + 0 D X Y C = Q C Q
53 50 52 eqeq12d A A 0 B C R + 0 D X Y A X + B B C A D Q = C A X + B B C A D Q = Q C Q
54 43 19 mulcld A A 0 B C R + 0 D X Y Q C
55 17 41 mulcld A A 0 B C R + 0 D X Y B B C A D
56 54 55 43 47 divsubdird A A 0 B C R + 0 D X Y Q C B B C A D Q = Q C Q B B C A D Q
57 56 eqcomd A A 0 B C R + 0 D X Y Q C Q B B C A D Q = Q C B B C A D Q
58 57 eqeq1d A A 0 B C R + 0 D X Y Q C Q B B C A D Q = A X Q C B B C A D Q = A X
59 54 43 47 divcld A A 0 B C R + 0 D X Y Q C Q
60 55 43 47 divcld A A 0 B C R + 0 D X Y B B C A D Q
61 simp3l A A 0 B C R + 0 D X Y X
62 61 recnd A A 0 B C R + 0 D X Y X
63 22 62 mulcld A A 0 B C R + 0 D X Y A X
64 59 60 63 subadd2d A A 0 B C R + 0 D X Y Q C Q B B C A D Q = A X A X + B B C A D Q = Q C Q
65 eqcom Q C B B C A D Q A = X X = Q C B B C A D Q A
66 65 a1i A A 0 B C R + 0 D X Y Q C B B C A D Q A = X X = Q C B B C A D Q A
67 54 55 subcld A A 0 B C R + 0 D X Y Q C B B C A D
68 67 43 47 divcld A A 0 B C R + 0 D X Y Q C B B C A D Q
69 simp11r A A 0 B C R + 0 D X Y A 0
70 68 62 22 69 divmul2d A A 0 B C R + 0 D X Y Q C B B C A D Q A = X Q C B B C A D Q = A X
71 67 43 22 47 69 divdiv1d A A 0 B C R + 0 D X Y Q C B B C A D Q A = Q C B B C A D Q A
72 71 eqeq2d A A 0 B C R + 0 D X Y X = Q C B B C A D Q A X = Q C B B C A D Q A
73 66 70 72 3bitr3d A A 0 B C R + 0 D X Y Q C B B C A D Q = A X X = Q C B B C A D Q A
74 58 64 73 3bitr3d A A 0 B C R + 0 D X Y A X + B B C A D Q = Q C Q X = Q C B B C A D Q A
75 53 74 bitrd A A 0 B C R + 0 D X Y A X + B B C A D Q = C X = Q C B B C A D Q A
76 15 75 sylan9bbr A A 0 B C R + 0 D X Y Y = B C A D Q A X + B Y = C X = Q C B B C A D Q A
77 1 oveq1i Q C = A 2 + B 2 C
78 27 recnd A A 0 B C A
79 78 sqcld A A 0 B C A 2
80 28 recnd A A 0 B C B
81 80 sqcld A A 0 B C B 2
82 simp3 A A 0 B C C
83 82 recnd A A 0 B C C
84 79 81 83 adddird A A 0 B C A 2 + B 2 C = A 2 C + B 2 C
85 77 84 syl5eq A A 0 B C Q C = A 2 C + B 2 C
86 85 adantr A A 0 B C R + 0 D Q C = A 2 C + B 2 C
87 80 adantr A A 0 B C R + 0 D B
88 33 recnd A A 0 B C R + 0 D C
89 87 88 mulcld A A 0 B C R + 0 D B C
90 78 adantr A A 0 B C R + 0 D A
91 36 recnd A A 0 B C R + 0 D D
92 91 sqrtcld A A 0 B C R + 0 D D
93 90 92 mulcld A A 0 B C R + 0 D A D
94 87 89 93 subdid A A 0 B C R + 0 D B B C A D = B B C B A D
95 80 80 83 mulassd A A 0 B C B B C = B B C
96 recn B B
97 96 sqvald B B 2 = B B
98 97 3ad2ant2 A A 0 B C B 2 = B B
99 98 eqcomd A A 0 B C B B = B 2
100 99 oveq1d A A 0 B C B B C = B 2 C
101 95 100 eqtr3d A A 0 B C B B C = B 2 C
102 101 adantr A A 0 B C R + 0 D B B C = B 2 C
103 87 90 92 mul12d A A 0 B C R + 0 D B A D = A B D
104 102 103 oveq12d A A 0 B C R + 0 D B B C B A D = B 2 C A B D
105 94 104 eqtrd A A 0 B C R + 0 D B B C A D = B 2 C A B D
106 86 105 oveq12d A A 0 B C R + 0 D Q C B B C A D = A 2 C + B 2 C - B 2 C A B D
107 90 sqcld A A 0 B C R + 0 D A 2
108 107 88 mulcld A A 0 B C R + 0 D A 2 C
109 87 sqcld A A 0 B C R + 0 D B 2
110 109 88 mulcld A A 0 B C R + 0 D B 2 C
111 108 110 addcomd A A 0 B C R + 0 D A 2 C + B 2 C = B 2 C + A 2 C
112 111 oveq1d A A 0 B C R + 0 D A 2 C + B 2 C - B 2 C A B D = B 2 C + A 2 C - B 2 C A B D
113 87 92 mulcld A A 0 B C R + 0 D B D
114 90 113 mulcld A A 0 B C R + 0 D A B D
115 110 108 114 pnncand A A 0 B C R + 0 D B 2 C + A 2 C - B 2 C A B D = A 2 C + A B D
116 106 112 115 3eqtrd A A 0 B C R + 0 D Q C B B C A D = A 2 C + A B D
117 116 oveq1d A A 0 B C R + 0 D Q C B B C A D Q A = A 2 C + A B D Q A
118 78 sqvald A A 0 B C A 2 = A A
119 118 oveq1d A A 0 B C A 2 C = A A C
120 78 78 83 mulassd A A 0 B C A A C = A A C
121 119 120 eqtrd A A 0 B C A 2 C = A A C
122 121 adantr A A 0 B C R + 0 D A 2 C = A A C
123 122 oveq1d A A 0 B C R + 0 D A 2 C + A B D = A A C + A B D
124 31 recnd A A 0 B C R + 0 D Q
125 124 90 mulcomd A A 0 B C R + 0 D Q A = A Q
126 123 125 oveq12d A A 0 B C R + 0 D A 2 C + A B D Q A = A A C + A B D A Q
127 90 88 mulcld A A 0 B C R + 0 D A C
128 90 127 113 adddid A A 0 B C R + 0 D A A C + B D = A A C + A B D
129 128 eqcomd A A 0 B C R + 0 D A A C + A B D = A A C + B D
130 129 oveq1d A A 0 B C R + 0 D A A C + A B D A Q = A A C + B D A Q
131 127 113 addcld A A 0 B C R + 0 D A C + B D
132 46 adantr A A 0 B C R + 0 D Q 0
133 simpl1r A A 0 B C R + 0 D A 0
134 131 124 90 132 133 divcan5d A A 0 B C R + 0 D A A C + B D A Q = A C + B D Q
135 130 134 eqtrd A A 0 B C R + 0 D A A C + A B D A Q = A C + B D Q
136 117 126 135 3eqtrd A A 0 B C R + 0 D Q C B B C A D Q A = A C + B D Q
137 136 eqeq2d A A 0 B C R + 0 D X = Q C B B C A D Q A X = A C + B D Q
138 137 biimpd A A 0 B C R + 0 D X = Q C B B C A D Q A X = A C + B D Q
139 138 3adant3 A A 0 B C R + 0 D X Y X = Q C B B C A D Q A X = A C + B D Q
140 139 adantr A A 0 B C R + 0 D X Y Y = B C A D Q X = Q C B B C A D Q A X = A C + B D Q
141 76 140 sylbid A A 0 B C R + 0 D X Y Y = B C A D Q A X + B Y = C X = A C + B D Q
142 141 ex A A 0 B C R + 0 D X Y Y = B C A D Q A X + B Y = C X = A C + B D Q
143 142 com23 A A 0 B C R + 0 D X Y A X + B Y = C Y = B C A D Q X = A C + B D Q
144 143 adantld A A 0 B C R + 0 D X Y X 2 + Y 2 = R 2 A X + B Y = C Y = B C A D Q X = A C + B D Q
145 144 imp A A 0 B C R + 0 D X Y X 2 + Y 2 = R 2 A X + B Y = C Y = B C A D Q X = A C + B D Q
146 145 ancrd A A 0 B C R + 0 D X Y X 2 + Y 2 = R 2 A X + B Y = C Y = B C A D Q X = A C + B D Q Y = B C A D Q
147 oveq2 Y = B C + A D Q B Y = B B C + A D Q
148 147 oveq2d Y = B C + A D Q A X + B Y = A X + B B C + A D Q
149 148 eqeq1d Y = B C + A D Q A X + B Y = C A X + B B C + A D Q = C
150 20 40 addcld A A 0 B C R + 0 D X Y B C + A D
151 17 150 43 47 divassd A A 0 B C R + 0 D X Y B B C + A D Q = B B C + A D Q
152 151 eqcomd A A 0 B C R + 0 D X Y B B C + A D Q = B B C + A D Q
153 152 oveq2d A A 0 B C R + 0 D X Y A X + B B C + A D Q = A X + B B C + A D Q
154 153 52 eqeq12d A A 0 B C R + 0 D X Y A X + B B C + A D Q = C A X + B B C + A D Q = Q C Q
155 17 150 mulcld A A 0 B C R + 0 D X Y B B C + A D
156 54 155 43 47 divsubdird A A 0 B C R + 0 D X Y Q C B B C + A D Q = Q C Q B B C + A D Q
157 156 eqcomd A A 0 B C R + 0 D X Y Q C Q B B C + A D Q = Q C B B C + A D Q
158 157 eqeq1d A A 0 B C R + 0 D X Y Q C Q B B C + A D Q = A X Q C B B C + A D Q = A X
159 155 43 47 divcld A A 0 B C R + 0 D X Y B B C + A D Q
160 59 159 63 subadd2d A A 0 B C R + 0 D X Y Q C Q B B C + A D Q = A X A X + B B C + A D Q = Q C Q
161 eqcom Q C B B C + A D Q A = X X = Q C B B C + A D Q A
162 161 a1i A A 0 B C R + 0 D X Y Q C B B C + A D Q A = X X = Q C B B C + A D Q A
163 54 155 subcld A A 0 B C R + 0 D X Y Q C B B C + A D
164 163 43 47 divcld A A 0 B C R + 0 D X Y Q C B B C + A D Q
165 164 62 22 69 divmul2d A A 0 B C R + 0 D X Y Q C B B C + A D Q A = X Q C B B C + A D Q = A X
166 163 43 22 47 69 divdiv1d A A 0 B C R + 0 D X Y Q C B B C + A D Q A = Q C B B C + A D Q A
167 166 eqeq2d A A 0 B C R + 0 D X Y X = Q C B B C + A D Q A X = Q C B B C + A D Q A
168 162 165 167 3bitr3d A A 0 B C R + 0 D X Y Q C B B C + A D Q = A X X = Q C B B C + A D Q A
169 158 160 168 3bitr3d A A 0 B C R + 0 D X Y A X + B B C + A D Q = Q C Q X = Q C B B C + A D Q A
170 154 169 bitrd A A 0 B C R + 0 D X Y A X + B B C + A D Q = C X = Q C B B C + A D Q A
171 149 170 sylan9bbr A A 0 B C R + 0 D X Y Y = B C + A D Q A X + B Y = C X = Q C B B C + A D Q A
172 87 89 93 adddid A A 0 B C R + 0 D B B C + A D = B B C + B A D
173 102 103 oveq12d A A 0 B C R + 0 D B B C + B A D = B 2 C + A B D
174 172 173 eqtrd A A 0 B C R + 0 D B B C + A D = B 2 C + A B D
175 86 174 oveq12d A A 0 B C R + 0 D Q C B B C + A D = A 2 C + B 2 C - B 2 C + A B D
176 111 oveq1d A A 0 B C R + 0 D A 2 C + B 2 C - B 2 C + A B D = B 2 C + A 2 C - B 2 C + A B D
177 110 108 114 pnpcand A A 0 B C R + 0 D B 2 C + A 2 C - B 2 C + A B D = A 2 C A B D
178 175 176 177 3eqtrd A A 0 B C R + 0 D Q C B B C + A D = A 2 C A B D
179 178 oveq1d A A 0 B C R + 0 D Q C B B C + A D Q A = A 2 C A B D Q A
180 122 oveq1d A A 0 B C R + 0 D A 2 C A B D = A A C A B D
181 180 125 oveq12d A A 0 B C R + 0 D A 2 C A B D Q A = A A C A B D A Q
182 90 127 113 subdid A A 0 B C R + 0 D A A C B D = A A C A B D
183 182 eqcomd A A 0 B C R + 0 D A A C A B D = A A C B D
184 183 oveq1d A A 0 B C R + 0 D A A C A B D A Q = A A C B D A Q
185 127 113 subcld A A 0 B C R + 0 D A C B D
186 185 124 90 132 133 divcan5d A A 0 B C R + 0 D A A C B D A Q = A C B D Q
187 184 186 eqtrd A A 0 B C R + 0 D A A C A B D A Q = A C B D Q
188 179 181 187 3eqtrd A A 0 B C R + 0 D Q C B B C + A D Q A = A C B D Q
189 188 eqeq2d A A 0 B C R + 0 D X = Q C B B C + A D Q A X = A C B D Q
190 189 biimpd A A 0 B C R + 0 D X = Q C B B C + A D Q A X = A C B D Q
191 190 3adant3 A A 0 B C R + 0 D X Y X = Q C B B C + A D Q A X = A C B D Q
192 191 adantr A A 0 B C R + 0 D X Y Y = B C + A D Q X = Q C B B C + A D Q A X = A C B D Q
193 171 192 sylbid A A 0 B C R + 0 D X Y Y = B C + A D Q A X + B Y = C X = A C B D Q
194 193 ex A A 0 B C R + 0 D X Y Y = B C + A D Q A X + B Y = C X = A C B D Q
195 194 com23 A A 0 B C R + 0 D X Y A X + B Y = C Y = B C + A D Q X = A C B D Q
196 195 adantld A A 0 B C R + 0 D X Y X 2 + Y 2 = R 2 A X + B Y = C Y = B C + A D Q X = A C B D Q
197 196 imp A A 0 B C R + 0 D X Y X 2 + Y 2 = R 2 A X + B Y = C Y = B C + A D Q X = A C B D Q
198 197 ancrd A A 0 B C R + 0 D X Y X 2 + Y 2 = R 2 A X + B Y = C Y = B C + A D Q X = A C B D Q Y = B C + A D Q
199 146 198 orim12d A A 0 B C R + 0 D X Y X 2 + Y 2 = R 2 A X + B Y = C Y = B C A D Q Y = B C + A D Q X = A C + B D Q Y = B C A D Q X = A C B D Q Y = B C + A D Q
200 12 199 mpd A A 0 B C R + 0 D X Y X 2 + Y 2 = R 2 A X + B Y = C X = A C + B D Q Y = B C A D Q X = A C B D Q Y = B C + A D Q
201 200 ex A A 0 B C R + 0 D X Y X 2 + Y 2 = R 2 A X + B Y = C X = A C + B D Q Y = B C A D Q X = A C B D Q Y = B C + A D Q