| Step |
Hyp |
Ref |
Expression |
| 1 |
|
itscnhlc0yqe.q |
|
| 2 |
|
itsclc0yqsol.d |
|
| 3 |
|
animorr |
|
| 4 |
3
|
anim2i |
|
| 5 |
1 2
|
itsclc0yqsol |
|
| 6 |
4 5
|
syl3an1 |
|
| 7 |
6
|
imp |
|
| 8 |
|
oveq1 |
|
| 9 |
8
|
adantr |
|
| 10 |
9
|
adantl |
|
| 11 |
10
|
adantr |
|
| 12 |
|
rpcn |
|
| 13 |
12
|
adantr |
|
| 14 |
13
|
adantl |
|
| 15 |
14
|
sqcld |
|
| 16 |
1
|
resum2sqcl |
|
| 17 |
16
|
recnd |
|
| 18 |
17
|
3adant3 |
|
| 19 |
18
|
adantr |
|
| 20 |
19
|
adantr |
|
| 21 |
15 20
|
mulcld |
|
| 22 |
|
simpll3 |
|
| 23 |
22
|
recnd |
|
| 24 |
23
|
sqcld |
|
| 25 |
21 24
|
subcld |
|
| 26 |
2 25
|
eqeltrid |
|
| 27 |
26
|
sqrtcld |
|
| 28 |
27
|
mul02d |
|
| 29 |
11 28
|
eqtrd |
|
| 30 |
29
|
oveq2d |
|
| 31 |
|
simpll2 |
|
| 32 |
31
|
recnd |
|
| 33 |
32 23
|
mulcld |
|
| 34 |
33
|
subid1d |
|
| 35 |
30 34
|
eqtrd |
|
| 36 |
|
sq0i |
|
| 37 |
36
|
adantr |
|
| 38 |
37
|
adantl |
|
| 39 |
38
|
adantr |
|
| 40 |
39
|
oveq1d |
|
| 41 |
32
|
sqcld |
|
| 42 |
41
|
addlidd |
|
| 43 |
40 42
|
eqtrd |
|
| 44 |
1 43
|
eqtrid |
|
| 45 |
|
recn |
|
| 46 |
45
|
sqvald |
|
| 47 |
46
|
3ad2ant2 |
|
| 48 |
47
|
adantr |
|
| 49 |
48
|
adantr |
|
| 50 |
44 49
|
eqtrd |
|
| 51 |
35 50
|
oveq12d |
|
| 52 |
|
simplrr |
|
| 53 |
23 32 32 52 52
|
divcan5d |
|
| 54 |
51 53
|
eqtrd |
|
| 55 |
54
|
eqeq2d |
|
| 56 |
55
|
biimpd |
|
| 57 |
29
|
oveq2d |
|
| 58 |
33
|
addridd |
|
| 59 |
57 58
|
eqtrd |
|
| 60 |
59 44
|
oveq12d |
|
| 61 |
|
simp2 |
|
| 62 |
61
|
recnd |
|
| 63 |
62
|
sqvald |
|
| 64 |
63
|
adantr |
|
| 65 |
64
|
oveq2d |
|
| 66 |
|
simpl3 |
|
| 67 |
66
|
recnd |
|
| 68 |
62
|
adantr |
|
| 69 |
|
simpr |
|
| 70 |
69
|
adantl |
|
| 71 |
67 68 68 70 70
|
divcan5d |
|
| 72 |
65 71
|
eqtrd |
|
| 73 |
72
|
adantr |
|
| 74 |
60 73
|
eqtrd |
|
| 75 |
74
|
eqeq2d |
|
| 76 |
75
|
biimpd |
|
| 77 |
56 76
|
jaod |
|
| 78 |
77
|
3adant3 |
|
| 79 |
78
|
adantr |
|
| 80 |
|
oveq1 |
|
| 81 |
80
|
oveq2d |
|
| 82 |
81
|
eqeq1d |
|
| 83 |
15
|
3adant3 |
|
| 84 |
23
|
3adant3 |
|
| 85 |
32
|
3adant3 |
|
| 86 |
|
simp1rr |
|
| 87 |
84 85 86
|
divcld |
|
| 88 |
87
|
sqcld |
|
| 89 |
|
simp3l |
|
| 90 |
89
|
recnd |
|
| 91 |
90
|
sqcld |
|
| 92 |
83 88 91
|
subadd2d |
|
| 93 |
23 32 52
|
sqdivd |
|
| 94 |
93
|
oveq2d |
|
| 95 |
31
|
resqcld |
|
| 96 |
31 52
|
sqgt0d |
|
| 97 |
95 96
|
elrpd |
|
| 98 |
97
|
rpcnne0d |
|
| 99 |
|
subdivcomb1 |
|
| 100 |
15 24 98 99
|
syl3anc |
|
| 101 |
94 100
|
eqtr4d |
|
| 102 |
101
|
eqeq1d |
|
| 103 |
102
|
3adant3 |
|
| 104 |
41
|
3adant3 |
|
| 105 |
104 83
|
mulcomd |
|
| 106 |
44
|
3adant3 |
|
| 107 |
106
|
eqcomd |
|
| 108 |
107
|
oveq2d |
|
| 109 |
105 108
|
eqtrd |
|
| 110 |
109
|
oveq1d |
|
| 111 |
110
|
oveq1d |
|
| 112 |
111
|
eqeq1d |
|
| 113 |
2
|
oveq1i |
|
| 114 |
113
|
eqeq1i |
|
| 115 |
|
eqcom |
|
| 116 |
26
|
3adant3 |
|
| 117 |
|
sqrtth |
|
| 118 |
117
|
eqcomd |
|
| 119 |
116 118
|
syl |
|
| 120 |
119
|
oveq1d |
|
| 121 |
27
|
3adant3 |
|
| 122 |
121 85 86
|
sqdivd |
|
| 123 |
120 122
|
eqtr4d |
|
| 124 |
123
|
eqeq2d |
|
| 125 |
121 85 86
|
divcld |
|
| 126 |
90 125
|
jca |
|
| 127 |
|
sqeqor |
|
| 128 |
126 127
|
syl |
|
| 129 |
|
orcom |
|
| 130 |
129
|
a1i |
|
| 131 |
124 128 130
|
3bitrd |
|
| 132 |
131
|
biimpd |
|
| 133 |
115 132
|
biimtrid |
|
| 134 |
114 133
|
biimtrrid |
|
| 135 |
112 134
|
sylbid |
|
| 136 |
103 135
|
sylbid |
|
| 137 |
92 136
|
sylbird |
|
| 138 |
137
|
com12 |
|
| 139 |
82 138
|
biimtrdi |
|
| 140 |
139
|
com13 |
|
| 141 |
140
|
adantrd |
|
| 142 |
141
|
imp |
|
| 143 |
142
|
ancld |
|
| 144 |
79 143
|
syld |
|
| 145 |
7 144
|
mpd |
|
| 146 |
145
|
ex |
|