| Step | Hyp | Ref | Expression | 
						
							| 1 |  | itscnhlc0yqe.q |  |-  Q = ( ( A ^ 2 ) + ( B ^ 2 ) ) | 
						
							| 2 |  | itsclc0yqsol.d |  |-  D = ( ( ( R ^ 2 ) x. Q ) - ( C ^ 2 ) ) | 
						
							| 3 |  | animorr |  |-  ( ( A = 0 /\ B =/= 0 ) -> ( A =/= 0 \/ B =/= 0 ) ) | 
						
							| 4 | 3 | anim2i |  |-  ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A = 0 /\ B =/= 0 ) ) -> ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A =/= 0 \/ B =/= 0 ) ) ) | 
						
							| 5 | 1 2 | itsclc0yqsol |  |-  ( ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A =/= 0 \/ B =/= 0 ) ) /\ ( R e. RR+ /\ 0 <_ D ) /\ ( X e. RR /\ Y e. RR ) ) -> ( ( ( ( X ^ 2 ) + ( Y ^ 2 ) ) = ( R ^ 2 ) /\ ( ( A x. X ) + ( B x. Y ) ) = C ) -> ( Y = ( ( ( B x. C ) - ( A x. ( sqrt ` D ) ) ) / Q ) \/ Y = ( ( ( B x. C ) + ( A x. ( sqrt ` D ) ) ) / Q ) ) ) ) | 
						
							| 6 | 4 5 | syl3an1 |  |-  ( ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A = 0 /\ B =/= 0 ) ) /\ ( R e. RR+ /\ 0 <_ D ) /\ ( X e. RR /\ Y e. RR ) ) -> ( ( ( ( X ^ 2 ) + ( Y ^ 2 ) ) = ( R ^ 2 ) /\ ( ( A x. X ) + ( B x. Y ) ) = C ) -> ( Y = ( ( ( B x. C ) - ( A x. ( sqrt ` D ) ) ) / Q ) \/ Y = ( ( ( B x. C ) + ( A x. ( sqrt ` D ) ) ) / Q ) ) ) ) | 
						
							| 7 | 6 | imp |  |-  ( ( ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A = 0 /\ B =/= 0 ) ) /\ ( R e. RR+ /\ 0 <_ D ) /\ ( X e. RR /\ Y e. RR ) ) /\ ( ( ( X ^ 2 ) + ( Y ^ 2 ) ) = ( R ^ 2 ) /\ ( ( A x. X ) + ( B x. Y ) ) = C ) ) -> ( Y = ( ( ( B x. C ) - ( A x. ( sqrt ` D ) ) ) / Q ) \/ Y = ( ( ( B x. C ) + ( A x. ( sqrt ` D ) ) ) / Q ) ) ) | 
						
							| 8 |  | oveq1 |  |-  ( A = 0 -> ( A x. ( sqrt ` D ) ) = ( 0 x. ( sqrt ` D ) ) ) | 
						
							| 9 | 8 | adantr |  |-  ( ( A = 0 /\ B =/= 0 ) -> ( A x. ( sqrt ` D ) ) = ( 0 x. ( sqrt ` D ) ) ) | 
						
							| 10 | 9 | adantl |  |-  ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A = 0 /\ B =/= 0 ) ) -> ( A x. ( sqrt ` D ) ) = ( 0 x. ( sqrt ` D ) ) ) | 
						
							| 11 | 10 | adantr |  |-  ( ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A = 0 /\ B =/= 0 ) ) /\ ( R e. RR+ /\ 0 <_ D ) ) -> ( A x. ( sqrt ` D ) ) = ( 0 x. ( sqrt ` D ) ) ) | 
						
							| 12 |  | rpcn |  |-  ( R e. RR+ -> R e. CC ) | 
						
							| 13 | 12 | adantr |  |-  ( ( R e. RR+ /\ 0 <_ D ) -> R e. CC ) | 
						
							| 14 | 13 | adantl |  |-  ( ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A = 0 /\ B =/= 0 ) ) /\ ( R e. RR+ /\ 0 <_ D ) ) -> R e. CC ) | 
						
							| 15 | 14 | sqcld |  |-  ( ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A = 0 /\ B =/= 0 ) ) /\ ( R e. RR+ /\ 0 <_ D ) ) -> ( R ^ 2 ) e. CC ) | 
						
							| 16 | 1 | resum2sqcl |  |-  ( ( A e. RR /\ B e. RR ) -> Q e. RR ) | 
						
							| 17 | 16 | recnd |  |-  ( ( A e. RR /\ B e. RR ) -> Q e. CC ) | 
						
							| 18 | 17 | 3adant3 |  |-  ( ( A e. RR /\ B e. RR /\ C e. RR ) -> Q e. CC ) | 
						
							| 19 | 18 | adantr |  |-  ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A = 0 /\ B =/= 0 ) ) -> Q e. CC ) | 
						
							| 20 | 19 | adantr |  |-  ( ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A = 0 /\ B =/= 0 ) ) /\ ( R e. RR+ /\ 0 <_ D ) ) -> Q e. CC ) | 
						
							| 21 | 15 20 | mulcld |  |-  ( ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A = 0 /\ B =/= 0 ) ) /\ ( R e. RR+ /\ 0 <_ D ) ) -> ( ( R ^ 2 ) x. Q ) e. CC ) | 
						
							| 22 |  | simpll3 |  |-  ( ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A = 0 /\ B =/= 0 ) ) /\ ( R e. RR+ /\ 0 <_ D ) ) -> C e. RR ) | 
						
							| 23 | 22 | recnd |  |-  ( ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A = 0 /\ B =/= 0 ) ) /\ ( R e. RR+ /\ 0 <_ D ) ) -> C e. CC ) | 
						
							| 24 | 23 | sqcld |  |-  ( ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A = 0 /\ B =/= 0 ) ) /\ ( R e. RR+ /\ 0 <_ D ) ) -> ( C ^ 2 ) e. CC ) | 
						
							| 25 | 21 24 | subcld |  |-  ( ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A = 0 /\ B =/= 0 ) ) /\ ( R e. RR+ /\ 0 <_ D ) ) -> ( ( ( R ^ 2 ) x. Q ) - ( C ^ 2 ) ) e. CC ) | 
						
							| 26 | 2 25 | eqeltrid |  |-  ( ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A = 0 /\ B =/= 0 ) ) /\ ( R e. RR+ /\ 0 <_ D ) ) -> D e. CC ) | 
						
							| 27 | 26 | sqrtcld |  |-  ( ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A = 0 /\ B =/= 0 ) ) /\ ( R e. RR+ /\ 0 <_ D ) ) -> ( sqrt ` D ) e. CC ) | 
						
							| 28 | 27 | mul02d |  |-  ( ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A = 0 /\ B =/= 0 ) ) /\ ( R e. RR+ /\ 0 <_ D ) ) -> ( 0 x. ( sqrt ` D ) ) = 0 ) | 
						
							| 29 | 11 28 | eqtrd |  |-  ( ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A = 0 /\ B =/= 0 ) ) /\ ( R e. RR+ /\ 0 <_ D ) ) -> ( A x. ( sqrt ` D ) ) = 0 ) | 
						
							| 30 | 29 | oveq2d |  |-  ( ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A = 0 /\ B =/= 0 ) ) /\ ( R e. RR+ /\ 0 <_ D ) ) -> ( ( B x. C ) - ( A x. ( sqrt ` D ) ) ) = ( ( B x. C ) - 0 ) ) | 
						
							| 31 |  | simpll2 |  |-  ( ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A = 0 /\ B =/= 0 ) ) /\ ( R e. RR+ /\ 0 <_ D ) ) -> B e. RR ) | 
						
							| 32 | 31 | recnd |  |-  ( ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A = 0 /\ B =/= 0 ) ) /\ ( R e. RR+ /\ 0 <_ D ) ) -> B e. CC ) | 
						
							| 33 | 32 23 | mulcld |  |-  ( ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A = 0 /\ B =/= 0 ) ) /\ ( R e. RR+ /\ 0 <_ D ) ) -> ( B x. C ) e. CC ) | 
						
							| 34 | 33 | subid1d |  |-  ( ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A = 0 /\ B =/= 0 ) ) /\ ( R e. RR+ /\ 0 <_ D ) ) -> ( ( B x. C ) - 0 ) = ( B x. C ) ) | 
						
							| 35 | 30 34 | eqtrd |  |-  ( ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A = 0 /\ B =/= 0 ) ) /\ ( R e. RR+ /\ 0 <_ D ) ) -> ( ( B x. C ) - ( A x. ( sqrt ` D ) ) ) = ( B x. C ) ) | 
						
							| 36 |  | sq0i |  |-  ( A = 0 -> ( A ^ 2 ) = 0 ) | 
						
							| 37 | 36 | adantr |  |-  ( ( A = 0 /\ B =/= 0 ) -> ( A ^ 2 ) = 0 ) | 
						
							| 38 | 37 | adantl |  |-  ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A = 0 /\ B =/= 0 ) ) -> ( A ^ 2 ) = 0 ) | 
						
							| 39 | 38 | adantr |  |-  ( ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A = 0 /\ B =/= 0 ) ) /\ ( R e. RR+ /\ 0 <_ D ) ) -> ( A ^ 2 ) = 0 ) | 
						
							| 40 | 39 | oveq1d |  |-  ( ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A = 0 /\ B =/= 0 ) ) /\ ( R e. RR+ /\ 0 <_ D ) ) -> ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( 0 + ( B ^ 2 ) ) ) | 
						
							| 41 | 32 | sqcld |  |-  ( ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A = 0 /\ B =/= 0 ) ) /\ ( R e. RR+ /\ 0 <_ D ) ) -> ( B ^ 2 ) e. CC ) | 
						
							| 42 | 41 | addlidd |  |-  ( ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A = 0 /\ B =/= 0 ) ) /\ ( R e. RR+ /\ 0 <_ D ) ) -> ( 0 + ( B ^ 2 ) ) = ( B ^ 2 ) ) | 
						
							| 43 | 40 42 | eqtrd |  |-  ( ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A = 0 /\ B =/= 0 ) ) /\ ( R e. RR+ /\ 0 <_ D ) ) -> ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( B ^ 2 ) ) | 
						
							| 44 | 1 43 | eqtrid |  |-  ( ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A = 0 /\ B =/= 0 ) ) /\ ( R e. RR+ /\ 0 <_ D ) ) -> Q = ( B ^ 2 ) ) | 
						
							| 45 |  | recn |  |-  ( B e. RR -> B e. CC ) | 
						
							| 46 | 45 | sqvald |  |-  ( B e. RR -> ( B ^ 2 ) = ( B x. B ) ) | 
						
							| 47 | 46 | 3ad2ant2 |  |-  ( ( A e. RR /\ B e. RR /\ C e. RR ) -> ( B ^ 2 ) = ( B x. B ) ) | 
						
							| 48 | 47 | adantr |  |-  ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A = 0 /\ B =/= 0 ) ) -> ( B ^ 2 ) = ( B x. B ) ) | 
						
							| 49 | 48 | adantr |  |-  ( ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A = 0 /\ B =/= 0 ) ) /\ ( R e. RR+ /\ 0 <_ D ) ) -> ( B ^ 2 ) = ( B x. B ) ) | 
						
							| 50 | 44 49 | eqtrd |  |-  ( ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A = 0 /\ B =/= 0 ) ) /\ ( R e. RR+ /\ 0 <_ D ) ) -> Q = ( B x. B ) ) | 
						
							| 51 | 35 50 | oveq12d |  |-  ( ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A = 0 /\ B =/= 0 ) ) /\ ( R e. RR+ /\ 0 <_ D ) ) -> ( ( ( B x. C ) - ( A x. ( sqrt ` D ) ) ) / Q ) = ( ( B x. C ) / ( B x. B ) ) ) | 
						
							| 52 |  | simplrr |  |-  ( ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A = 0 /\ B =/= 0 ) ) /\ ( R e. RR+ /\ 0 <_ D ) ) -> B =/= 0 ) | 
						
							| 53 | 23 32 32 52 52 | divcan5d |  |-  ( ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A = 0 /\ B =/= 0 ) ) /\ ( R e. RR+ /\ 0 <_ D ) ) -> ( ( B x. C ) / ( B x. B ) ) = ( C / B ) ) | 
						
							| 54 | 51 53 | eqtrd |  |-  ( ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A = 0 /\ B =/= 0 ) ) /\ ( R e. RR+ /\ 0 <_ D ) ) -> ( ( ( B x. C ) - ( A x. ( sqrt ` D ) ) ) / Q ) = ( C / B ) ) | 
						
							| 55 | 54 | eqeq2d |  |-  ( ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A = 0 /\ B =/= 0 ) ) /\ ( R e. RR+ /\ 0 <_ D ) ) -> ( Y = ( ( ( B x. C ) - ( A x. ( sqrt ` D ) ) ) / Q ) <-> Y = ( C / B ) ) ) | 
						
							| 56 | 55 | biimpd |  |-  ( ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A = 0 /\ B =/= 0 ) ) /\ ( R e. RR+ /\ 0 <_ D ) ) -> ( Y = ( ( ( B x. C ) - ( A x. ( sqrt ` D ) ) ) / Q ) -> Y = ( C / B ) ) ) | 
						
							| 57 | 29 | oveq2d |  |-  ( ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A = 0 /\ B =/= 0 ) ) /\ ( R e. RR+ /\ 0 <_ D ) ) -> ( ( B x. C ) + ( A x. ( sqrt ` D ) ) ) = ( ( B x. C ) + 0 ) ) | 
						
							| 58 | 33 | addridd |  |-  ( ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A = 0 /\ B =/= 0 ) ) /\ ( R e. RR+ /\ 0 <_ D ) ) -> ( ( B x. C ) + 0 ) = ( B x. C ) ) | 
						
							| 59 | 57 58 | eqtrd |  |-  ( ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A = 0 /\ B =/= 0 ) ) /\ ( R e. RR+ /\ 0 <_ D ) ) -> ( ( B x. C ) + ( A x. ( sqrt ` D ) ) ) = ( B x. C ) ) | 
						
							| 60 | 59 44 | oveq12d |  |-  ( ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A = 0 /\ B =/= 0 ) ) /\ ( R e. RR+ /\ 0 <_ D ) ) -> ( ( ( B x. C ) + ( A x. ( sqrt ` D ) ) ) / Q ) = ( ( B x. C ) / ( B ^ 2 ) ) ) | 
						
							| 61 |  | simp2 |  |-  ( ( A e. RR /\ B e. RR /\ C e. RR ) -> B e. RR ) | 
						
							| 62 | 61 | recnd |  |-  ( ( A e. RR /\ B e. RR /\ C e. RR ) -> B e. CC ) | 
						
							| 63 | 62 | sqvald |  |-  ( ( A e. RR /\ B e. RR /\ C e. RR ) -> ( B ^ 2 ) = ( B x. B ) ) | 
						
							| 64 | 63 | adantr |  |-  ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A = 0 /\ B =/= 0 ) ) -> ( B ^ 2 ) = ( B x. B ) ) | 
						
							| 65 | 64 | oveq2d |  |-  ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A = 0 /\ B =/= 0 ) ) -> ( ( B x. C ) / ( B ^ 2 ) ) = ( ( B x. C ) / ( B x. B ) ) ) | 
						
							| 66 |  | simpl3 |  |-  ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A = 0 /\ B =/= 0 ) ) -> C e. RR ) | 
						
							| 67 | 66 | recnd |  |-  ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A = 0 /\ B =/= 0 ) ) -> C e. CC ) | 
						
							| 68 | 62 | adantr |  |-  ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A = 0 /\ B =/= 0 ) ) -> B e. CC ) | 
						
							| 69 |  | simpr |  |-  ( ( A = 0 /\ B =/= 0 ) -> B =/= 0 ) | 
						
							| 70 | 69 | adantl |  |-  ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A = 0 /\ B =/= 0 ) ) -> B =/= 0 ) | 
						
							| 71 | 67 68 68 70 70 | divcan5d |  |-  ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A = 0 /\ B =/= 0 ) ) -> ( ( B x. C ) / ( B x. B ) ) = ( C / B ) ) | 
						
							| 72 | 65 71 | eqtrd |  |-  ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A = 0 /\ B =/= 0 ) ) -> ( ( B x. C ) / ( B ^ 2 ) ) = ( C / B ) ) | 
						
							| 73 | 72 | adantr |  |-  ( ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A = 0 /\ B =/= 0 ) ) /\ ( R e. RR+ /\ 0 <_ D ) ) -> ( ( B x. C ) / ( B ^ 2 ) ) = ( C / B ) ) | 
						
							| 74 | 60 73 | eqtrd |  |-  ( ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A = 0 /\ B =/= 0 ) ) /\ ( R e. RR+ /\ 0 <_ D ) ) -> ( ( ( B x. C ) + ( A x. ( sqrt ` D ) ) ) / Q ) = ( C / B ) ) | 
						
							| 75 | 74 | eqeq2d |  |-  ( ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A = 0 /\ B =/= 0 ) ) /\ ( R e. RR+ /\ 0 <_ D ) ) -> ( Y = ( ( ( B x. C ) + ( A x. ( sqrt ` D ) ) ) / Q ) <-> Y = ( C / B ) ) ) | 
						
							| 76 | 75 | biimpd |  |-  ( ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A = 0 /\ B =/= 0 ) ) /\ ( R e. RR+ /\ 0 <_ D ) ) -> ( Y = ( ( ( B x. C ) + ( A x. ( sqrt ` D ) ) ) / Q ) -> Y = ( C / B ) ) ) | 
						
							| 77 | 56 76 | jaod |  |-  ( ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A = 0 /\ B =/= 0 ) ) /\ ( R e. RR+ /\ 0 <_ D ) ) -> ( ( Y = ( ( ( B x. C ) - ( A x. ( sqrt ` D ) ) ) / Q ) \/ Y = ( ( ( B x. C ) + ( A x. ( sqrt ` D ) ) ) / Q ) ) -> Y = ( C / B ) ) ) | 
						
							| 78 | 77 | 3adant3 |  |-  ( ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A = 0 /\ B =/= 0 ) ) /\ ( R e. RR+ /\ 0 <_ D ) /\ ( X e. RR /\ Y e. RR ) ) -> ( ( Y = ( ( ( B x. C ) - ( A x. ( sqrt ` D ) ) ) / Q ) \/ Y = ( ( ( B x. C ) + ( A x. ( sqrt ` D ) ) ) / Q ) ) -> Y = ( C / B ) ) ) | 
						
							| 79 | 78 | adantr |  |-  ( ( ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A = 0 /\ B =/= 0 ) ) /\ ( R e. RR+ /\ 0 <_ D ) /\ ( X e. RR /\ Y e. RR ) ) /\ ( ( ( X ^ 2 ) + ( Y ^ 2 ) ) = ( R ^ 2 ) /\ ( ( A x. X ) + ( B x. Y ) ) = C ) ) -> ( ( Y = ( ( ( B x. C ) - ( A x. ( sqrt ` D ) ) ) / Q ) \/ Y = ( ( ( B x. C ) + ( A x. ( sqrt ` D ) ) ) / Q ) ) -> Y = ( C / B ) ) ) | 
						
							| 80 |  | oveq1 |  |-  ( Y = ( C / B ) -> ( Y ^ 2 ) = ( ( C / B ) ^ 2 ) ) | 
						
							| 81 | 80 | oveq2d |  |-  ( Y = ( C / B ) -> ( ( X ^ 2 ) + ( Y ^ 2 ) ) = ( ( X ^ 2 ) + ( ( C / B ) ^ 2 ) ) ) | 
						
							| 82 | 81 | eqeq1d |  |-  ( Y = ( C / B ) -> ( ( ( X ^ 2 ) + ( Y ^ 2 ) ) = ( R ^ 2 ) <-> ( ( X ^ 2 ) + ( ( C / B ) ^ 2 ) ) = ( R ^ 2 ) ) ) | 
						
							| 83 | 15 | 3adant3 |  |-  ( ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A = 0 /\ B =/= 0 ) ) /\ ( R e. RR+ /\ 0 <_ D ) /\ ( X e. RR /\ Y e. RR ) ) -> ( R ^ 2 ) e. CC ) | 
						
							| 84 | 23 | 3adant3 |  |-  ( ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A = 0 /\ B =/= 0 ) ) /\ ( R e. RR+ /\ 0 <_ D ) /\ ( X e. RR /\ Y e. RR ) ) -> C e. CC ) | 
						
							| 85 | 32 | 3adant3 |  |-  ( ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A = 0 /\ B =/= 0 ) ) /\ ( R e. RR+ /\ 0 <_ D ) /\ ( X e. RR /\ Y e. RR ) ) -> B e. CC ) | 
						
							| 86 |  | simp1rr |  |-  ( ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A = 0 /\ B =/= 0 ) ) /\ ( R e. RR+ /\ 0 <_ D ) /\ ( X e. RR /\ Y e. RR ) ) -> B =/= 0 ) | 
						
							| 87 | 84 85 86 | divcld |  |-  ( ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A = 0 /\ B =/= 0 ) ) /\ ( R e. RR+ /\ 0 <_ D ) /\ ( X e. RR /\ Y e. RR ) ) -> ( C / B ) e. CC ) | 
						
							| 88 | 87 | sqcld |  |-  ( ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A = 0 /\ B =/= 0 ) ) /\ ( R e. RR+ /\ 0 <_ D ) /\ ( X e. RR /\ Y e. RR ) ) -> ( ( C / B ) ^ 2 ) e. CC ) | 
						
							| 89 |  | simp3l |  |-  ( ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A = 0 /\ B =/= 0 ) ) /\ ( R e. RR+ /\ 0 <_ D ) /\ ( X e. RR /\ Y e. RR ) ) -> X e. RR ) | 
						
							| 90 | 89 | recnd |  |-  ( ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A = 0 /\ B =/= 0 ) ) /\ ( R e. RR+ /\ 0 <_ D ) /\ ( X e. RR /\ Y e. RR ) ) -> X e. CC ) | 
						
							| 91 | 90 | sqcld |  |-  ( ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A = 0 /\ B =/= 0 ) ) /\ ( R e. RR+ /\ 0 <_ D ) /\ ( X e. RR /\ Y e. RR ) ) -> ( X ^ 2 ) e. CC ) | 
						
							| 92 | 83 88 91 | subadd2d |  |-  ( ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A = 0 /\ B =/= 0 ) ) /\ ( R e. RR+ /\ 0 <_ D ) /\ ( X e. RR /\ Y e. RR ) ) -> ( ( ( R ^ 2 ) - ( ( C / B ) ^ 2 ) ) = ( X ^ 2 ) <-> ( ( X ^ 2 ) + ( ( C / B ) ^ 2 ) ) = ( R ^ 2 ) ) ) | 
						
							| 93 | 23 32 52 | sqdivd |  |-  ( ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A = 0 /\ B =/= 0 ) ) /\ ( R e. RR+ /\ 0 <_ D ) ) -> ( ( C / B ) ^ 2 ) = ( ( C ^ 2 ) / ( B ^ 2 ) ) ) | 
						
							| 94 | 93 | oveq2d |  |-  ( ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A = 0 /\ B =/= 0 ) ) /\ ( R e. RR+ /\ 0 <_ D ) ) -> ( ( R ^ 2 ) - ( ( C / B ) ^ 2 ) ) = ( ( R ^ 2 ) - ( ( C ^ 2 ) / ( B ^ 2 ) ) ) ) | 
						
							| 95 | 31 | resqcld |  |-  ( ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A = 0 /\ B =/= 0 ) ) /\ ( R e. RR+ /\ 0 <_ D ) ) -> ( B ^ 2 ) e. RR ) | 
						
							| 96 | 31 52 | sqgt0d |  |-  ( ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A = 0 /\ B =/= 0 ) ) /\ ( R e. RR+ /\ 0 <_ D ) ) -> 0 < ( B ^ 2 ) ) | 
						
							| 97 | 95 96 | elrpd |  |-  ( ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A = 0 /\ B =/= 0 ) ) /\ ( R e. RR+ /\ 0 <_ D ) ) -> ( B ^ 2 ) e. RR+ ) | 
						
							| 98 | 97 | rpcnne0d |  |-  ( ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A = 0 /\ B =/= 0 ) ) /\ ( R e. RR+ /\ 0 <_ D ) ) -> ( ( B ^ 2 ) e. CC /\ ( B ^ 2 ) =/= 0 ) ) | 
						
							| 99 |  | subdivcomb1 |  |-  ( ( ( R ^ 2 ) e. CC /\ ( C ^ 2 ) e. CC /\ ( ( B ^ 2 ) e. CC /\ ( B ^ 2 ) =/= 0 ) ) -> ( ( ( ( B ^ 2 ) x. ( R ^ 2 ) ) - ( C ^ 2 ) ) / ( B ^ 2 ) ) = ( ( R ^ 2 ) - ( ( C ^ 2 ) / ( B ^ 2 ) ) ) ) | 
						
							| 100 | 15 24 98 99 | syl3anc |  |-  ( ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A = 0 /\ B =/= 0 ) ) /\ ( R e. RR+ /\ 0 <_ D ) ) -> ( ( ( ( B ^ 2 ) x. ( R ^ 2 ) ) - ( C ^ 2 ) ) / ( B ^ 2 ) ) = ( ( R ^ 2 ) - ( ( C ^ 2 ) / ( B ^ 2 ) ) ) ) | 
						
							| 101 | 94 100 | eqtr4d |  |-  ( ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A = 0 /\ B =/= 0 ) ) /\ ( R e. RR+ /\ 0 <_ D ) ) -> ( ( R ^ 2 ) - ( ( C / B ) ^ 2 ) ) = ( ( ( ( B ^ 2 ) x. ( R ^ 2 ) ) - ( C ^ 2 ) ) / ( B ^ 2 ) ) ) | 
						
							| 102 | 101 | eqeq1d |  |-  ( ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A = 0 /\ B =/= 0 ) ) /\ ( R e. RR+ /\ 0 <_ D ) ) -> ( ( ( R ^ 2 ) - ( ( C / B ) ^ 2 ) ) = ( X ^ 2 ) <-> ( ( ( ( B ^ 2 ) x. ( R ^ 2 ) ) - ( C ^ 2 ) ) / ( B ^ 2 ) ) = ( X ^ 2 ) ) ) | 
						
							| 103 | 102 | 3adant3 |  |-  ( ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A = 0 /\ B =/= 0 ) ) /\ ( R e. RR+ /\ 0 <_ D ) /\ ( X e. RR /\ Y e. RR ) ) -> ( ( ( R ^ 2 ) - ( ( C / B ) ^ 2 ) ) = ( X ^ 2 ) <-> ( ( ( ( B ^ 2 ) x. ( R ^ 2 ) ) - ( C ^ 2 ) ) / ( B ^ 2 ) ) = ( X ^ 2 ) ) ) | 
						
							| 104 | 41 | 3adant3 |  |-  ( ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A = 0 /\ B =/= 0 ) ) /\ ( R e. RR+ /\ 0 <_ D ) /\ ( X e. RR /\ Y e. RR ) ) -> ( B ^ 2 ) e. CC ) | 
						
							| 105 | 104 83 | mulcomd |  |-  ( ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A = 0 /\ B =/= 0 ) ) /\ ( R e. RR+ /\ 0 <_ D ) /\ ( X e. RR /\ Y e. RR ) ) -> ( ( B ^ 2 ) x. ( R ^ 2 ) ) = ( ( R ^ 2 ) x. ( B ^ 2 ) ) ) | 
						
							| 106 | 44 | 3adant3 |  |-  ( ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A = 0 /\ B =/= 0 ) ) /\ ( R e. RR+ /\ 0 <_ D ) /\ ( X e. RR /\ Y e. RR ) ) -> Q = ( B ^ 2 ) ) | 
						
							| 107 | 106 | eqcomd |  |-  ( ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A = 0 /\ B =/= 0 ) ) /\ ( R e. RR+ /\ 0 <_ D ) /\ ( X e. RR /\ Y e. RR ) ) -> ( B ^ 2 ) = Q ) | 
						
							| 108 | 107 | oveq2d |  |-  ( ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A = 0 /\ B =/= 0 ) ) /\ ( R e. RR+ /\ 0 <_ D ) /\ ( X e. RR /\ Y e. RR ) ) -> ( ( R ^ 2 ) x. ( B ^ 2 ) ) = ( ( R ^ 2 ) x. Q ) ) | 
						
							| 109 | 105 108 | eqtrd |  |-  ( ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A = 0 /\ B =/= 0 ) ) /\ ( R e. RR+ /\ 0 <_ D ) /\ ( X e. RR /\ Y e. RR ) ) -> ( ( B ^ 2 ) x. ( R ^ 2 ) ) = ( ( R ^ 2 ) x. Q ) ) | 
						
							| 110 | 109 | oveq1d |  |-  ( ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A = 0 /\ B =/= 0 ) ) /\ ( R e. RR+ /\ 0 <_ D ) /\ ( X e. RR /\ Y e. RR ) ) -> ( ( ( B ^ 2 ) x. ( R ^ 2 ) ) - ( C ^ 2 ) ) = ( ( ( R ^ 2 ) x. Q ) - ( C ^ 2 ) ) ) | 
						
							| 111 | 110 | oveq1d |  |-  ( ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A = 0 /\ B =/= 0 ) ) /\ ( R e. RR+ /\ 0 <_ D ) /\ ( X e. RR /\ Y e. RR ) ) -> ( ( ( ( B ^ 2 ) x. ( R ^ 2 ) ) - ( C ^ 2 ) ) / ( B ^ 2 ) ) = ( ( ( ( R ^ 2 ) x. Q ) - ( C ^ 2 ) ) / ( B ^ 2 ) ) ) | 
						
							| 112 | 111 | eqeq1d |  |-  ( ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A = 0 /\ B =/= 0 ) ) /\ ( R e. RR+ /\ 0 <_ D ) /\ ( X e. RR /\ Y e. RR ) ) -> ( ( ( ( ( B ^ 2 ) x. ( R ^ 2 ) ) - ( C ^ 2 ) ) / ( B ^ 2 ) ) = ( X ^ 2 ) <-> ( ( ( ( R ^ 2 ) x. Q ) - ( C ^ 2 ) ) / ( B ^ 2 ) ) = ( X ^ 2 ) ) ) | 
						
							| 113 | 2 | oveq1i |  |-  ( D / ( B ^ 2 ) ) = ( ( ( ( R ^ 2 ) x. Q ) - ( C ^ 2 ) ) / ( B ^ 2 ) ) | 
						
							| 114 | 113 | eqeq1i |  |-  ( ( D / ( B ^ 2 ) ) = ( X ^ 2 ) <-> ( ( ( ( R ^ 2 ) x. Q ) - ( C ^ 2 ) ) / ( B ^ 2 ) ) = ( X ^ 2 ) ) | 
						
							| 115 |  | eqcom |  |-  ( ( D / ( B ^ 2 ) ) = ( X ^ 2 ) <-> ( X ^ 2 ) = ( D / ( B ^ 2 ) ) ) | 
						
							| 116 | 26 | 3adant3 |  |-  ( ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A = 0 /\ B =/= 0 ) ) /\ ( R e. RR+ /\ 0 <_ D ) /\ ( X e. RR /\ Y e. RR ) ) -> D e. CC ) | 
						
							| 117 |  | sqrtth |  |-  ( D e. CC -> ( ( sqrt ` D ) ^ 2 ) = D ) | 
						
							| 118 | 117 | eqcomd |  |-  ( D e. CC -> D = ( ( sqrt ` D ) ^ 2 ) ) | 
						
							| 119 | 116 118 | syl |  |-  ( ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A = 0 /\ B =/= 0 ) ) /\ ( R e. RR+ /\ 0 <_ D ) /\ ( X e. RR /\ Y e. RR ) ) -> D = ( ( sqrt ` D ) ^ 2 ) ) | 
						
							| 120 | 119 | oveq1d |  |-  ( ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A = 0 /\ B =/= 0 ) ) /\ ( R e. RR+ /\ 0 <_ D ) /\ ( X e. RR /\ Y e. RR ) ) -> ( D / ( B ^ 2 ) ) = ( ( ( sqrt ` D ) ^ 2 ) / ( B ^ 2 ) ) ) | 
						
							| 121 | 27 | 3adant3 |  |-  ( ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A = 0 /\ B =/= 0 ) ) /\ ( R e. RR+ /\ 0 <_ D ) /\ ( X e. RR /\ Y e. RR ) ) -> ( sqrt ` D ) e. CC ) | 
						
							| 122 | 121 85 86 | sqdivd |  |-  ( ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A = 0 /\ B =/= 0 ) ) /\ ( R e. RR+ /\ 0 <_ D ) /\ ( X e. RR /\ Y e. RR ) ) -> ( ( ( sqrt ` D ) / B ) ^ 2 ) = ( ( ( sqrt ` D ) ^ 2 ) / ( B ^ 2 ) ) ) | 
						
							| 123 | 120 122 | eqtr4d |  |-  ( ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A = 0 /\ B =/= 0 ) ) /\ ( R e. RR+ /\ 0 <_ D ) /\ ( X e. RR /\ Y e. RR ) ) -> ( D / ( B ^ 2 ) ) = ( ( ( sqrt ` D ) / B ) ^ 2 ) ) | 
						
							| 124 | 123 | eqeq2d |  |-  ( ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A = 0 /\ B =/= 0 ) ) /\ ( R e. RR+ /\ 0 <_ D ) /\ ( X e. RR /\ Y e. RR ) ) -> ( ( X ^ 2 ) = ( D / ( B ^ 2 ) ) <-> ( X ^ 2 ) = ( ( ( sqrt ` D ) / B ) ^ 2 ) ) ) | 
						
							| 125 | 121 85 86 | divcld |  |-  ( ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A = 0 /\ B =/= 0 ) ) /\ ( R e. RR+ /\ 0 <_ D ) /\ ( X e. RR /\ Y e. RR ) ) -> ( ( sqrt ` D ) / B ) e. CC ) | 
						
							| 126 | 90 125 | jca |  |-  ( ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A = 0 /\ B =/= 0 ) ) /\ ( R e. RR+ /\ 0 <_ D ) /\ ( X e. RR /\ Y e. RR ) ) -> ( X e. CC /\ ( ( sqrt ` D ) / B ) e. CC ) ) | 
						
							| 127 |  | sqeqor |  |-  ( ( X e. CC /\ ( ( sqrt ` D ) / B ) e. CC ) -> ( ( X ^ 2 ) = ( ( ( sqrt ` D ) / B ) ^ 2 ) <-> ( X = ( ( sqrt ` D ) / B ) \/ X = -u ( ( sqrt ` D ) / B ) ) ) ) | 
						
							| 128 | 126 127 | syl |  |-  ( ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A = 0 /\ B =/= 0 ) ) /\ ( R e. RR+ /\ 0 <_ D ) /\ ( X e. RR /\ Y e. RR ) ) -> ( ( X ^ 2 ) = ( ( ( sqrt ` D ) / B ) ^ 2 ) <-> ( X = ( ( sqrt ` D ) / B ) \/ X = -u ( ( sqrt ` D ) / B ) ) ) ) | 
						
							| 129 |  | orcom |  |-  ( ( X = ( ( sqrt ` D ) / B ) \/ X = -u ( ( sqrt ` D ) / B ) ) <-> ( X = -u ( ( sqrt ` D ) / B ) \/ X = ( ( sqrt ` D ) / B ) ) ) | 
						
							| 130 | 129 | a1i |  |-  ( ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A = 0 /\ B =/= 0 ) ) /\ ( R e. RR+ /\ 0 <_ D ) /\ ( X e. RR /\ Y e. RR ) ) -> ( ( X = ( ( sqrt ` D ) / B ) \/ X = -u ( ( sqrt ` D ) / B ) ) <-> ( X = -u ( ( sqrt ` D ) / B ) \/ X = ( ( sqrt ` D ) / B ) ) ) ) | 
						
							| 131 | 124 128 130 | 3bitrd |  |-  ( ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A = 0 /\ B =/= 0 ) ) /\ ( R e. RR+ /\ 0 <_ D ) /\ ( X e. RR /\ Y e. RR ) ) -> ( ( X ^ 2 ) = ( D / ( B ^ 2 ) ) <-> ( X = -u ( ( sqrt ` D ) / B ) \/ X = ( ( sqrt ` D ) / B ) ) ) ) | 
						
							| 132 | 131 | biimpd |  |-  ( ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A = 0 /\ B =/= 0 ) ) /\ ( R e. RR+ /\ 0 <_ D ) /\ ( X e. RR /\ Y e. RR ) ) -> ( ( X ^ 2 ) = ( D / ( B ^ 2 ) ) -> ( X = -u ( ( sqrt ` D ) / B ) \/ X = ( ( sqrt ` D ) / B ) ) ) ) | 
						
							| 133 | 115 132 | biimtrid |  |-  ( ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A = 0 /\ B =/= 0 ) ) /\ ( R e. RR+ /\ 0 <_ D ) /\ ( X e. RR /\ Y e. RR ) ) -> ( ( D / ( B ^ 2 ) ) = ( X ^ 2 ) -> ( X = -u ( ( sqrt ` D ) / B ) \/ X = ( ( sqrt ` D ) / B ) ) ) ) | 
						
							| 134 | 114 133 | biimtrrid |  |-  ( ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A = 0 /\ B =/= 0 ) ) /\ ( R e. RR+ /\ 0 <_ D ) /\ ( X e. RR /\ Y e. RR ) ) -> ( ( ( ( ( R ^ 2 ) x. Q ) - ( C ^ 2 ) ) / ( B ^ 2 ) ) = ( X ^ 2 ) -> ( X = -u ( ( sqrt ` D ) / B ) \/ X = ( ( sqrt ` D ) / B ) ) ) ) | 
						
							| 135 | 112 134 | sylbid |  |-  ( ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A = 0 /\ B =/= 0 ) ) /\ ( R e. RR+ /\ 0 <_ D ) /\ ( X e. RR /\ Y e. RR ) ) -> ( ( ( ( ( B ^ 2 ) x. ( R ^ 2 ) ) - ( C ^ 2 ) ) / ( B ^ 2 ) ) = ( X ^ 2 ) -> ( X = -u ( ( sqrt ` D ) / B ) \/ X = ( ( sqrt ` D ) / B ) ) ) ) | 
						
							| 136 | 103 135 | sylbid |  |-  ( ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A = 0 /\ B =/= 0 ) ) /\ ( R e. RR+ /\ 0 <_ D ) /\ ( X e. RR /\ Y e. RR ) ) -> ( ( ( R ^ 2 ) - ( ( C / B ) ^ 2 ) ) = ( X ^ 2 ) -> ( X = -u ( ( sqrt ` D ) / B ) \/ X = ( ( sqrt ` D ) / B ) ) ) ) | 
						
							| 137 | 92 136 | sylbird |  |-  ( ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A = 0 /\ B =/= 0 ) ) /\ ( R e. RR+ /\ 0 <_ D ) /\ ( X e. RR /\ Y e. RR ) ) -> ( ( ( X ^ 2 ) + ( ( C / B ) ^ 2 ) ) = ( R ^ 2 ) -> ( X = -u ( ( sqrt ` D ) / B ) \/ X = ( ( sqrt ` D ) / B ) ) ) ) | 
						
							| 138 | 137 | com12 |  |-  ( ( ( X ^ 2 ) + ( ( C / B ) ^ 2 ) ) = ( R ^ 2 ) -> ( ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A = 0 /\ B =/= 0 ) ) /\ ( R e. RR+ /\ 0 <_ D ) /\ ( X e. RR /\ Y e. RR ) ) -> ( X = -u ( ( sqrt ` D ) / B ) \/ X = ( ( sqrt ` D ) / B ) ) ) ) | 
						
							| 139 | 82 138 | biimtrdi |  |-  ( Y = ( C / B ) -> ( ( ( X ^ 2 ) + ( Y ^ 2 ) ) = ( R ^ 2 ) -> ( ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A = 0 /\ B =/= 0 ) ) /\ ( R e. RR+ /\ 0 <_ D ) /\ ( X e. RR /\ Y e. RR ) ) -> ( X = -u ( ( sqrt ` D ) / B ) \/ X = ( ( sqrt ` D ) / B ) ) ) ) ) | 
						
							| 140 | 139 | com13 |  |-  ( ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A = 0 /\ B =/= 0 ) ) /\ ( R e. RR+ /\ 0 <_ D ) /\ ( X e. RR /\ Y e. RR ) ) -> ( ( ( X ^ 2 ) + ( Y ^ 2 ) ) = ( R ^ 2 ) -> ( Y = ( C / B ) -> ( X = -u ( ( sqrt ` D ) / B ) \/ X = ( ( sqrt ` D ) / B ) ) ) ) ) | 
						
							| 141 | 140 | adantrd |  |-  ( ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A = 0 /\ B =/= 0 ) ) /\ ( R e. RR+ /\ 0 <_ D ) /\ ( X e. RR /\ Y e. RR ) ) -> ( ( ( ( X ^ 2 ) + ( Y ^ 2 ) ) = ( R ^ 2 ) /\ ( ( A x. X ) + ( B x. Y ) ) = C ) -> ( Y = ( C / B ) -> ( X = -u ( ( sqrt ` D ) / B ) \/ X = ( ( sqrt ` D ) / B ) ) ) ) ) | 
						
							| 142 | 141 | imp |  |-  ( ( ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A = 0 /\ B =/= 0 ) ) /\ ( R e. RR+ /\ 0 <_ D ) /\ ( X e. RR /\ Y e. RR ) ) /\ ( ( ( X ^ 2 ) + ( Y ^ 2 ) ) = ( R ^ 2 ) /\ ( ( A x. X ) + ( B x. Y ) ) = C ) ) -> ( Y = ( C / B ) -> ( X = -u ( ( sqrt ` D ) / B ) \/ X = ( ( sqrt ` D ) / B ) ) ) ) | 
						
							| 143 | 142 | ancld |  |-  ( ( ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A = 0 /\ B =/= 0 ) ) /\ ( R e. RR+ /\ 0 <_ D ) /\ ( X e. RR /\ Y e. RR ) ) /\ ( ( ( X ^ 2 ) + ( Y ^ 2 ) ) = ( R ^ 2 ) /\ ( ( A x. X ) + ( B x. Y ) ) = C ) ) -> ( Y = ( C / B ) -> ( Y = ( C / B ) /\ ( X = -u ( ( sqrt ` D ) / B ) \/ X = ( ( sqrt ` D ) / B ) ) ) ) ) | 
						
							| 144 | 79 143 | syld |  |-  ( ( ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A = 0 /\ B =/= 0 ) ) /\ ( R e. RR+ /\ 0 <_ D ) /\ ( X e. RR /\ Y e. RR ) ) /\ ( ( ( X ^ 2 ) + ( Y ^ 2 ) ) = ( R ^ 2 ) /\ ( ( A x. X ) + ( B x. Y ) ) = C ) ) -> ( ( Y = ( ( ( B x. C ) - ( A x. ( sqrt ` D ) ) ) / Q ) \/ Y = ( ( ( B x. C ) + ( A x. ( sqrt ` D ) ) ) / Q ) ) -> ( Y = ( C / B ) /\ ( X = -u ( ( sqrt ` D ) / B ) \/ X = ( ( sqrt ` D ) / B ) ) ) ) ) | 
						
							| 145 | 7 144 | mpd |  |-  ( ( ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A = 0 /\ B =/= 0 ) ) /\ ( R e. RR+ /\ 0 <_ D ) /\ ( X e. RR /\ Y e. RR ) ) /\ ( ( ( X ^ 2 ) + ( Y ^ 2 ) ) = ( R ^ 2 ) /\ ( ( A x. X ) + ( B x. Y ) ) = C ) ) -> ( Y = ( C / B ) /\ ( X = -u ( ( sqrt ` D ) / B ) \/ X = ( ( sqrt ` D ) / B ) ) ) ) | 
						
							| 146 | 145 | ex |  |-  ( ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A = 0 /\ B =/= 0 ) ) /\ ( R e. RR+ /\ 0 <_ D ) /\ ( X e. RR /\ Y e. RR ) ) -> ( ( ( ( X ^ 2 ) + ( Y ^ 2 ) ) = ( R ^ 2 ) /\ ( ( A x. X ) + ( B x. Y ) ) = C ) -> ( Y = ( C / B ) /\ ( X = -u ( ( sqrt ` D ) / B ) \/ X = ( ( sqrt ` D ) / B ) ) ) ) ) |