| Step | Hyp | Ref | Expression | 
						
							| 1 |  | itscnhlc0yqe.q |  |-  Q = ( ( A ^ 2 ) + ( B ^ 2 ) ) | 
						
							| 2 |  | itsclc0yqsol.d |  |-  D = ( ( ( R ^ 2 ) x. Q ) - ( C ^ 2 ) ) | 
						
							| 3 |  | eqid |  |-  -u ( 2 x. ( B x. C ) ) = -u ( 2 x. ( B x. C ) ) | 
						
							| 4 |  | eqid |  |-  ( ( C ^ 2 ) - ( ( A ^ 2 ) x. ( R ^ 2 ) ) ) = ( ( C ^ 2 ) - ( ( A ^ 2 ) x. ( R ^ 2 ) ) ) | 
						
							| 5 | 1 3 4 | itsclc0yqe |  |-  ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ R e. RR+ /\ ( X e. RR /\ Y e. RR ) ) -> ( ( ( ( X ^ 2 ) + ( Y ^ 2 ) ) = ( R ^ 2 ) /\ ( ( A x. X ) + ( B x. Y ) ) = C ) -> ( ( Q x. ( Y ^ 2 ) ) + ( ( -u ( 2 x. ( B x. C ) ) x. Y ) + ( ( C ^ 2 ) - ( ( A ^ 2 ) x. ( R ^ 2 ) ) ) ) ) = 0 ) ) | 
						
							| 6 | 5 | 3adant1r |  |-  ( ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A =/= 0 \/ B =/= 0 ) ) /\ R e. RR+ /\ ( X e. RR /\ Y e. RR ) ) -> ( ( ( ( X ^ 2 ) + ( Y ^ 2 ) ) = ( R ^ 2 ) /\ ( ( A x. X ) + ( B x. Y ) ) = C ) -> ( ( Q x. ( Y ^ 2 ) ) + ( ( -u ( 2 x. ( B x. C ) ) x. Y ) + ( ( C ^ 2 ) - ( ( A ^ 2 ) x. ( R ^ 2 ) ) ) ) ) = 0 ) ) | 
						
							| 7 | 6 | 3adant2r |  |-  ( ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A =/= 0 \/ B =/= 0 ) ) /\ ( R e. RR+ /\ 0 <_ D ) /\ ( X e. RR /\ Y e. RR ) ) -> ( ( ( ( X ^ 2 ) + ( Y ^ 2 ) ) = ( R ^ 2 ) /\ ( ( A x. X ) + ( B x. Y ) ) = C ) -> ( ( Q x. ( Y ^ 2 ) ) + ( ( -u ( 2 x. ( B x. C ) ) x. Y ) + ( ( C ^ 2 ) - ( ( A ^ 2 ) x. ( R ^ 2 ) ) ) ) ) = 0 ) ) | 
						
							| 8 |  | 3simpa |  |-  ( ( A e. RR /\ B e. RR /\ C e. RR ) -> ( A e. RR /\ B e. RR ) ) | 
						
							| 9 | 8 | adantr |  |-  ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A =/= 0 \/ B =/= 0 ) ) -> ( A e. RR /\ B e. RR ) ) | 
						
							| 10 | 1 | resum2sqcl |  |-  ( ( A e. RR /\ B e. RR ) -> Q e. RR ) | 
						
							| 11 | 9 10 | syl |  |-  ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A =/= 0 \/ B =/= 0 ) ) -> Q e. RR ) | 
						
							| 12 | 11 | 3ad2ant1 |  |-  ( ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A =/= 0 \/ B =/= 0 ) ) /\ ( R e. RR+ /\ 0 <_ D ) /\ ( X e. RR /\ Y e. RR ) ) -> Q e. RR ) | 
						
							| 13 | 12 | recnd |  |-  ( ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A =/= 0 \/ B =/= 0 ) ) /\ ( R e. RR+ /\ 0 <_ D ) /\ ( X e. RR /\ Y e. RR ) ) -> Q e. CC ) | 
						
							| 14 |  | simpr1 |  |-  ( ( A =/= 0 /\ ( A e. RR /\ B e. RR /\ C e. RR ) ) -> A e. RR ) | 
						
							| 15 |  | simpl |  |-  ( ( A =/= 0 /\ ( A e. RR /\ B e. RR /\ C e. RR ) ) -> A =/= 0 ) | 
						
							| 16 |  | simpr2 |  |-  ( ( A =/= 0 /\ ( A e. RR /\ B e. RR /\ C e. RR ) ) -> B e. RR ) | 
						
							| 17 | 1 | resum2sqgt0 |  |-  ( ( ( A e. RR /\ A =/= 0 ) /\ B e. RR ) -> 0 < Q ) | 
						
							| 18 | 14 15 16 17 | syl21anc |  |-  ( ( A =/= 0 /\ ( A e. RR /\ B e. RR /\ C e. RR ) ) -> 0 < Q ) | 
						
							| 19 | 18 | ex |  |-  ( A =/= 0 -> ( ( A e. RR /\ B e. RR /\ C e. RR ) -> 0 < Q ) ) | 
						
							| 20 |  | simpr2 |  |-  ( ( B =/= 0 /\ ( A e. RR /\ B e. RR /\ C e. RR ) ) -> B e. RR ) | 
						
							| 21 |  | simpl |  |-  ( ( B =/= 0 /\ ( A e. RR /\ B e. RR /\ C e. RR ) ) -> B =/= 0 ) | 
						
							| 22 |  | simpr1 |  |-  ( ( B =/= 0 /\ ( A e. RR /\ B e. RR /\ C e. RR ) ) -> A e. RR ) | 
						
							| 23 |  | eqid |  |-  ( ( B ^ 2 ) + ( A ^ 2 ) ) = ( ( B ^ 2 ) + ( A ^ 2 ) ) | 
						
							| 24 | 23 | resum2sqgt0 |  |-  ( ( ( B e. RR /\ B =/= 0 ) /\ A e. RR ) -> 0 < ( ( B ^ 2 ) + ( A ^ 2 ) ) ) | 
						
							| 25 | 20 21 22 24 | syl21anc |  |-  ( ( B =/= 0 /\ ( A e. RR /\ B e. RR /\ C e. RR ) ) -> 0 < ( ( B ^ 2 ) + ( A ^ 2 ) ) ) | 
						
							| 26 |  | simp1 |  |-  ( ( A e. RR /\ B e. RR /\ C e. RR ) -> A e. RR ) | 
						
							| 27 | 26 | recnd |  |-  ( ( A e. RR /\ B e. RR /\ C e. RR ) -> A e. CC ) | 
						
							| 28 | 27 | sqcld |  |-  ( ( A e. RR /\ B e. RR /\ C e. RR ) -> ( A ^ 2 ) e. CC ) | 
						
							| 29 |  | simp2 |  |-  ( ( A e. RR /\ B e. RR /\ C e. RR ) -> B e. RR ) | 
						
							| 30 | 29 | recnd |  |-  ( ( A e. RR /\ B e. RR /\ C e. RR ) -> B e. CC ) | 
						
							| 31 | 30 | sqcld |  |-  ( ( A e. RR /\ B e. RR /\ C e. RR ) -> ( B ^ 2 ) e. CC ) | 
						
							| 32 | 28 31 | addcomd |  |-  ( ( A e. RR /\ B e. RR /\ C e. RR ) -> ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( ( B ^ 2 ) + ( A ^ 2 ) ) ) | 
						
							| 33 | 32 | adantl |  |-  ( ( B =/= 0 /\ ( A e. RR /\ B e. RR /\ C e. RR ) ) -> ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( ( B ^ 2 ) + ( A ^ 2 ) ) ) | 
						
							| 34 | 1 33 | eqtrid |  |-  ( ( B =/= 0 /\ ( A e. RR /\ B e. RR /\ C e. RR ) ) -> Q = ( ( B ^ 2 ) + ( A ^ 2 ) ) ) | 
						
							| 35 | 25 34 | breqtrrd |  |-  ( ( B =/= 0 /\ ( A e. RR /\ B e. RR /\ C e. RR ) ) -> 0 < Q ) | 
						
							| 36 | 35 | ex |  |-  ( B =/= 0 -> ( ( A e. RR /\ B e. RR /\ C e. RR ) -> 0 < Q ) ) | 
						
							| 37 | 19 36 | jaoi |  |-  ( ( A =/= 0 \/ B =/= 0 ) -> ( ( A e. RR /\ B e. RR /\ C e. RR ) -> 0 < Q ) ) | 
						
							| 38 | 37 | impcom |  |-  ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A =/= 0 \/ B =/= 0 ) ) -> 0 < Q ) | 
						
							| 39 | 38 | gt0ne0d |  |-  ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A =/= 0 \/ B =/= 0 ) ) -> Q =/= 0 ) | 
						
							| 40 | 39 | 3ad2ant1 |  |-  ( ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A =/= 0 \/ B =/= 0 ) ) /\ ( R e. RR+ /\ 0 <_ D ) /\ ( X e. RR /\ Y e. RR ) ) -> Q =/= 0 ) | 
						
							| 41 |  | 2cnd |  |-  ( ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A =/= 0 \/ B =/= 0 ) ) /\ ( R e. RR+ /\ 0 <_ D ) /\ ( X e. RR /\ Y e. RR ) ) -> 2 e. CC ) | 
						
							| 42 |  | recn |  |-  ( B e. RR -> B e. CC ) | 
						
							| 43 | 42 | 3ad2ant2 |  |-  ( ( A e. RR /\ B e. RR /\ C e. RR ) -> B e. CC ) | 
						
							| 44 | 43 | adantr |  |-  ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A =/= 0 \/ B =/= 0 ) ) -> B e. CC ) | 
						
							| 45 | 44 | 3ad2ant1 |  |-  ( ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A =/= 0 \/ B =/= 0 ) ) /\ ( R e. RR+ /\ 0 <_ D ) /\ ( X e. RR /\ Y e. RR ) ) -> B e. CC ) | 
						
							| 46 |  | recn |  |-  ( C e. RR -> C e. CC ) | 
						
							| 47 | 46 | 3ad2ant3 |  |-  ( ( A e. RR /\ B e. RR /\ C e. RR ) -> C e. CC ) | 
						
							| 48 | 47 | adantr |  |-  ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A =/= 0 \/ B =/= 0 ) ) -> C e. CC ) | 
						
							| 49 | 48 | 3ad2ant1 |  |-  ( ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A =/= 0 \/ B =/= 0 ) ) /\ ( R e. RR+ /\ 0 <_ D ) /\ ( X e. RR /\ Y e. RR ) ) -> C e. CC ) | 
						
							| 50 | 45 49 | mulcld |  |-  ( ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A =/= 0 \/ B =/= 0 ) ) /\ ( R e. RR+ /\ 0 <_ D ) /\ ( X e. RR /\ Y e. RR ) ) -> ( B x. C ) e. CC ) | 
						
							| 51 | 41 50 | mulcld |  |-  ( ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A =/= 0 \/ B =/= 0 ) ) /\ ( R e. RR+ /\ 0 <_ D ) /\ ( X e. RR /\ Y e. RR ) ) -> ( 2 x. ( B x. C ) ) e. CC ) | 
						
							| 52 | 51 | negcld |  |-  ( ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A =/= 0 \/ B =/= 0 ) ) /\ ( R e. RR+ /\ 0 <_ D ) /\ ( X e. RR /\ Y e. RR ) ) -> -u ( 2 x. ( B x. C ) ) e. CC ) | 
						
							| 53 | 49 | sqcld |  |-  ( ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A =/= 0 \/ B =/= 0 ) ) /\ ( R e. RR+ /\ 0 <_ D ) /\ ( X e. RR /\ Y e. RR ) ) -> ( C ^ 2 ) e. CC ) | 
						
							| 54 |  | recn |  |-  ( A e. RR -> A e. CC ) | 
						
							| 55 | 54 | 3ad2ant1 |  |-  ( ( A e. RR /\ B e. RR /\ C e. RR ) -> A e. CC ) | 
						
							| 56 | 55 | adantr |  |-  ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A =/= 0 \/ B =/= 0 ) ) -> A e. CC ) | 
						
							| 57 | 56 | 3ad2ant1 |  |-  ( ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A =/= 0 \/ B =/= 0 ) ) /\ ( R e. RR+ /\ 0 <_ D ) /\ ( X e. RR /\ Y e. RR ) ) -> A e. CC ) | 
						
							| 58 | 57 | sqcld |  |-  ( ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A =/= 0 \/ B =/= 0 ) ) /\ ( R e. RR+ /\ 0 <_ D ) /\ ( X e. RR /\ Y e. RR ) ) -> ( A ^ 2 ) e. CC ) | 
						
							| 59 |  | simpl |  |-  ( ( R e. RR+ /\ 0 <_ D ) -> R e. RR+ ) | 
						
							| 60 | 59 | rpcnd |  |-  ( ( R e. RR+ /\ 0 <_ D ) -> R e. CC ) | 
						
							| 61 | 60 | 3ad2ant2 |  |-  ( ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A =/= 0 \/ B =/= 0 ) ) /\ ( R e. RR+ /\ 0 <_ D ) /\ ( X e. RR /\ Y e. RR ) ) -> R e. CC ) | 
						
							| 62 | 61 | sqcld |  |-  ( ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A =/= 0 \/ B =/= 0 ) ) /\ ( R e. RR+ /\ 0 <_ D ) /\ ( X e. RR /\ Y e. RR ) ) -> ( R ^ 2 ) e. CC ) | 
						
							| 63 | 58 62 | mulcld |  |-  ( ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A =/= 0 \/ B =/= 0 ) ) /\ ( R e. RR+ /\ 0 <_ D ) /\ ( X e. RR /\ Y e. RR ) ) -> ( ( A ^ 2 ) x. ( R ^ 2 ) ) e. CC ) | 
						
							| 64 | 53 63 | subcld |  |-  ( ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A =/= 0 \/ B =/= 0 ) ) /\ ( R e. RR+ /\ 0 <_ D ) /\ ( X e. RR /\ Y e. RR ) ) -> ( ( C ^ 2 ) - ( ( A ^ 2 ) x. ( R ^ 2 ) ) ) e. CC ) | 
						
							| 65 |  | recn |  |-  ( Y e. RR -> Y e. CC ) | 
						
							| 66 | 65 | adantl |  |-  ( ( X e. RR /\ Y e. RR ) -> Y e. CC ) | 
						
							| 67 | 66 | 3ad2ant3 |  |-  ( ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A =/= 0 \/ B =/= 0 ) ) /\ ( R e. RR+ /\ 0 <_ D ) /\ ( X e. RR /\ Y e. RR ) ) -> Y e. CC ) | 
						
							| 68 |  | eqidd |  |-  ( ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A =/= 0 \/ B =/= 0 ) ) /\ ( R e. RR+ /\ 0 <_ D ) /\ ( X e. RR /\ Y e. RR ) ) -> ( ( -u ( 2 x. ( B x. C ) ) ^ 2 ) - ( 4 x. ( Q x. ( ( C ^ 2 ) - ( ( A ^ 2 ) x. ( R ^ 2 ) ) ) ) ) ) = ( ( -u ( 2 x. ( B x. C ) ) ^ 2 ) - ( 4 x. ( Q x. ( ( C ^ 2 ) - ( ( A ^ 2 ) x. ( R ^ 2 ) ) ) ) ) ) ) | 
						
							| 69 | 13 40 52 64 67 68 | quad |  |-  ( ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A =/= 0 \/ B =/= 0 ) ) /\ ( R e. RR+ /\ 0 <_ D ) /\ ( X e. RR /\ Y e. RR ) ) -> ( ( ( Q x. ( Y ^ 2 ) ) + ( ( -u ( 2 x. ( B x. C ) ) x. Y ) + ( ( C ^ 2 ) - ( ( A ^ 2 ) x. ( R ^ 2 ) ) ) ) ) = 0 <-> ( Y = ( ( -u -u ( 2 x. ( B x. C ) ) + ( sqrt ` ( ( -u ( 2 x. ( B x. C ) ) ^ 2 ) - ( 4 x. ( Q x. ( ( C ^ 2 ) - ( ( A ^ 2 ) x. ( R ^ 2 ) ) ) ) ) ) ) ) / ( 2 x. Q ) ) \/ Y = ( ( -u -u ( 2 x. ( B x. C ) ) - ( sqrt ` ( ( -u ( 2 x. ( B x. C ) ) ^ 2 ) - ( 4 x. ( Q x. ( ( C ^ 2 ) - ( ( A ^ 2 ) x. ( R ^ 2 ) ) ) ) ) ) ) ) / ( 2 x. Q ) ) ) ) ) | 
						
							| 70 | 54 | abscld |  |-  ( A e. RR -> ( abs ` A ) e. RR ) | 
						
							| 71 | 70 | recnd |  |-  ( A e. RR -> ( abs ` A ) e. CC ) | 
						
							| 72 | 71 | 3ad2ant1 |  |-  ( ( A e. RR /\ B e. RR /\ C e. RR ) -> ( abs ` A ) e. CC ) | 
						
							| 73 | 72 | adantr |  |-  ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A =/= 0 \/ B =/= 0 ) ) -> ( abs ` A ) e. CC ) | 
						
							| 74 | 73 | 3ad2ant1 |  |-  ( ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A =/= 0 \/ B =/= 0 ) ) /\ ( R e. RR+ /\ 0 <_ D ) /\ ( X e. RR /\ Y e. RR ) ) -> ( abs ` A ) e. CC ) | 
						
							| 75 | 59 | rpred |  |-  ( ( R e. RR+ /\ 0 <_ D ) -> R e. RR ) | 
						
							| 76 | 75 | 3ad2ant2 |  |-  ( ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A =/= 0 \/ B =/= 0 ) ) /\ ( R e. RR+ /\ 0 <_ D ) /\ ( X e. RR /\ Y e. RR ) ) -> R e. RR ) | 
						
							| 77 | 76 | resqcld |  |-  ( ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A =/= 0 \/ B =/= 0 ) ) /\ ( R e. RR+ /\ 0 <_ D ) /\ ( X e. RR /\ Y e. RR ) ) -> ( R ^ 2 ) e. RR ) | 
						
							| 78 | 77 12 | remulcld |  |-  ( ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A =/= 0 \/ B =/= 0 ) ) /\ ( R e. RR+ /\ 0 <_ D ) /\ ( X e. RR /\ Y e. RR ) ) -> ( ( R ^ 2 ) x. Q ) e. RR ) | 
						
							| 79 |  | simp1l3 |  |-  ( ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A =/= 0 \/ B =/= 0 ) ) /\ ( R e. RR+ /\ 0 <_ D ) /\ ( X e. RR /\ Y e. RR ) ) -> C e. RR ) | 
						
							| 80 | 79 | resqcld |  |-  ( ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A =/= 0 \/ B =/= 0 ) ) /\ ( R e. RR+ /\ 0 <_ D ) /\ ( X e. RR /\ Y e. RR ) ) -> ( C ^ 2 ) e. RR ) | 
						
							| 81 | 78 80 | resubcld |  |-  ( ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A =/= 0 \/ B =/= 0 ) ) /\ ( R e. RR+ /\ 0 <_ D ) /\ ( X e. RR /\ Y e. RR ) ) -> ( ( ( R ^ 2 ) x. Q ) - ( C ^ 2 ) ) e. RR ) | 
						
							| 82 | 2 81 | eqeltrid |  |-  ( ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A =/= 0 \/ B =/= 0 ) ) /\ ( R e. RR+ /\ 0 <_ D ) /\ ( X e. RR /\ Y e. RR ) ) -> D e. RR ) | 
						
							| 83 | 82 | recnd |  |-  ( ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A =/= 0 \/ B =/= 0 ) ) /\ ( R e. RR+ /\ 0 <_ D ) /\ ( X e. RR /\ Y e. RR ) ) -> D e. CC ) | 
						
							| 84 | 83 | sqrtcld |  |-  ( ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A =/= 0 \/ B =/= 0 ) ) /\ ( R e. RR+ /\ 0 <_ D ) /\ ( X e. RR /\ Y e. RR ) ) -> ( sqrt ` D ) e. CC ) | 
						
							| 85 | 41 74 84 | mulassd |  |-  ( ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A =/= 0 \/ B =/= 0 ) ) /\ ( R e. RR+ /\ 0 <_ D ) /\ ( X e. RR /\ Y e. RR ) ) -> ( ( 2 x. ( abs ` A ) ) x. ( sqrt ` D ) ) = ( 2 x. ( ( abs ` A ) x. ( sqrt ` D ) ) ) ) | 
						
							| 86 | 85 | oveq2d |  |-  ( ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A =/= 0 \/ B =/= 0 ) ) /\ ( R e. RR+ /\ 0 <_ D ) /\ ( X e. RR /\ Y e. RR ) ) -> ( ( 2 x. ( B x. C ) ) + ( ( 2 x. ( abs ` A ) ) x. ( sqrt ` D ) ) ) = ( ( 2 x. ( B x. C ) ) + ( 2 x. ( ( abs ` A ) x. ( sqrt ` D ) ) ) ) ) | 
						
							| 87 | 51 | negnegd |  |-  ( ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A =/= 0 \/ B =/= 0 ) ) /\ ( R e. RR+ /\ 0 <_ D ) /\ ( X e. RR /\ Y e. RR ) ) -> -u -u ( 2 x. ( B x. C ) ) = ( 2 x. ( B x. C ) ) ) | 
						
							| 88 |  | simpl |  |-  ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A =/= 0 \/ B =/= 0 ) ) -> ( A e. RR /\ B e. RR /\ C e. RR ) ) | 
						
							| 89 | 88 | 3ad2ant1 |  |-  ( ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A =/= 0 \/ B =/= 0 ) ) /\ ( R e. RR+ /\ 0 <_ D ) /\ ( X e. RR /\ Y e. RR ) ) -> ( A e. RR /\ B e. RR /\ C e. RR ) ) | 
						
							| 90 |  | simp2r |  |-  ( ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A =/= 0 \/ B =/= 0 ) ) /\ ( R e. RR+ /\ 0 <_ D ) /\ ( X e. RR /\ Y e. RR ) ) -> 0 <_ D ) | 
						
							| 91 | 1 3 4 2 | itsclc0yqsollem2 |  |-  ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ R e. RR /\ 0 <_ D ) -> ( sqrt ` ( ( -u ( 2 x. ( B x. C ) ) ^ 2 ) - ( 4 x. ( Q x. ( ( C ^ 2 ) - ( ( A ^ 2 ) x. ( R ^ 2 ) ) ) ) ) ) ) = ( ( 2 x. ( abs ` A ) ) x. ( sqrt ` D ) ) ) | 
						
							| 92 | 89 76 90 91 | syl3anc |  |-  ( ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A =/= 0 \/ B =/= 0 ) ) /\ ( R e. RR+ /\ 0 <_ D ) /\ ( X e. RR /\ Y e. RR ) ) -> ( sqrt ` ( ( -u ( 2 x. ( B x. C ) ) ^ 2 ) - ( 4 x. ( Q x. ( ( C ^ 2 ) - ( ( A ^ 2 ) x. ( R ^ 2 ) ) ) ) ) ) ) = ( ( 2 x. ( abs ` A ) ) x. ( sqrt ` D ) ) ) | 
						
							| 93 | 87 92 | oveq12d |  |-  ( ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A =/= 0 \/ B =/= 0 ) ) /\ ( R e. RR+ /\ 0 <_ D ) /\ ( X e. RR /\ Y e. RR ) ) -> ( -u -u ( 2 x. ( B x. C ) ) + ( sqrt ` ( ( -u ( 2 x. ( B x. C ) ) ^ 2 ) - ( 4 x. ( Q x. ( ( C ^ 2 ) - ( ( A ^ 2 ) x. ( R ^ 2 ) ) ) ) ) ) ) ) = ( ( 2 x. ( B x. C ) ) + ( ( 2 x. ( abs ` A ) ) x. ( sqrt ` D ) ) ) ) | 
						
							| 94 | 74 84 | mulcld |  |-  ( ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A =/= 0 \/ B =/= 0 ) ) /\ ( R e. RR+ /\ 0 <_ D ) /\ ( X e. RR /\ Y e. RR ) ) -> ( ( abs ` A ) x. ( sqrt ` D ) ) e. CC ) | 
						
							| 95 | 41 50 94 | adddid |  |-  ( ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A =/= 0 \/ B =/= 0 ) ) /\ ( R e. RR+ /\ 0 <_ D ) /\ ( X e. RR /\ Y e. RR ) ) -> ( 2 x. ( ( B x. C ) + ( ( abs ` A ) x. ( sqrt ` D ) ) ) ) = ( ( 2 x. ( B x. C ) ) + ( 2 x. ( ( abs ` A ) x. ( sqrt ` D ) ) ) ) ) | 
						
							| 96 | 86 93 95 | 3eqtr4d |  |-  ( ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A =/= 0 \/ B =/= 0 ) ) /\ ( R e. RR+ /\ 0 <_ D ) /\ ( X e. RR /\ Y e. RR ) ) -> ( -u -u ( 2 x. ( B x. C ) ) + ( sqrt ` ( ( -u ( 2 x. ( B x. C ) ) ^ 2 ) - ( 4 x. ( Q x. ( ( C ^ 2 ) - ( ( A ^ 2 ) x. ( R ^ 2 ) ) ) ) ) ) ) ) = ( 2 x. ( ( B x. C ) + ( ( abs ` A ) x. ( sqrt ` D ) ) ) ) ) | 
						
							| 97 | 96 | oveq1d |  |-  ( ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A =/= 0 \/ B =/= 0 ) ) /\ ( R e. RR+ /\ 0 <_ D ) /\ ( X e. RR /\ Y e. RR ) ) -> ( ( -u -u ( 2 x. ( B x. C ) ) + ( sqrt ` ( ( -u ( 2 x. ( B x. C ) ) ^ 2 ) - ( 4 x. ( Q x. ( ( C ^ 2 ) - ( ( A ^ 2 ) x. ( R ^ 2 ) ) ) ) ) ) ) ) / ( 2 x. Q ) ) = ( ( 2 x. ( ( B x. C ) + ( ( abs ` A ) x. ( sqrt ` D ) ) ) ) / ( 2 x. Q ) ) ) | 
						
							| 98 | 50 94 | addcld |  |-  ( ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A =/= 0 \/ B =/= 0 ) ) /\ ( R e. RR+ /\ 0 <_ D ) /\ ( X e. RR /\ Y e. RR ) ) -> ( ( B x. C ) + ( ( abs ` A ) x. ( sqrt ` D ) ) ) e. CC ) | 
						
							| 99 |  | 2ne0 |  |-  2 =/= 0 | 
						
							| 100 | 99 | a1i |  |-  ( ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A =/= 0 \/ B =/= 0 ) ) /\ ( R e. RR+ /\ 0 <_ D ) /\ ( X e. RR /\ Y e. RR ) ) -> 2 =/= 0 ) | 
						
							| 101 | 98 13 41 40 100 | divcan5d |  |-  ( ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A =/= 0 \/ B =/= 0 ) ) /\ ( R e. RR+ /\ 0 <_ D ) /\ ( X e. RR /\ Y e. RR ) ) -> ( ( 2 x. ( ( B x. C ) + ( ( abs ` A ) x. ( sqrt ` D ) ) ) ) / ( 2 x. Q ) ) = ( ( ( B x. C ) + ( ( abs ` A ) x. ( sqrt ` D ) ) ) / Q ) ) | 
						
							| 102 | 97 101 | eqtrd |  |-  ( ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A =/= 0 \/ B =/= 0 ) ) /\ ( R e. RR+ /\ 0 <_ D ) /\ ( X e. RR /\ Y e. RR ) ) -> ( ( -u -u ( 2 x. ( B x. C ) ) + ( sqrt ` ( ( -u ( 2 x. ( B x. C ) ) ^ 2 ) - ( 4 x. ( Q x. ( ( C ^ 2 ) - ( ( A ^ 2 ) x. ( R ^ 2 ) ) ) ) ) ) ) ) / ( 2 x. Q ) ) = ( ( ( B x. C ) + ( ( abs ` A ) x. ( sqrt ` D ) ) ) / Q ) ) | 
						
							| 103 | 102 | eqeq2d |  |-  ( ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A =/= 0 \/ B =/= 0 ) ) /\ ( R e. RR+ /\ 0 <_ D ) /\ ( X e. RR /\ Y e. RR ) ) -> ( Y = ( ( -u -u ( 2 x. ( B x. C ) ) + ( sqrt ` ( ( -u ( 2 x. ( B x. C ) ) ^ 2 ) - ( 4 x. ( Q x. ( ( C ^ 2 ) - ( ( A ^ 2 ) x. ( R ^ 2 ) ) ) ) ) ) ) ) / ( 2 x. Q ) ) <-> Y = ( ( ( B x. C ) + ( ( abs ` A ) x. ( sqrt ` D ) ) ) / Q ) ) ) | 
						
							| 104 | 85 | oveq2d |  |-  ( ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A =/= 0 \/ B =/= 0 ) ) /\ ( R e. RR+ /\ 0 <_ D ) /\ ( X e. RR /\ Y e. RR ) ) -> ( ( 2 x. ( B x. C ) ) - ( ( 2 x. ( abs ` A ) ) x. ( sqrt ` D ) ) ) = ( ( 2 x. ( B x. C ) ) - ( 2 x. ( ( abs ` A ) x. ( sqrt ` D ) ) ) ) ) | 
						
							| 105 | 87 92 | oveq12d |  |-  ( ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A =/= 0 \/ B =/= 0 ) ) /\ ( R e. RR+ /\ 0 <_ D ) /\ ( X e. RR /\ Y e. RR ) ) -> ( -u -u ( 2 x. ( B x. C ) ) - ( sqrt ` ( ( -u ( 2 x. ( B x. C ) ) ^ 2 ) - ( 4 x. ( Q x. ( ( C ^ 2 ) - ( ( A ^ 2 ) x. ( R ^ 2 ) ) ) ) ) ) ) ) = ( ( 2 x. ( B x. C ) ) - ( ( 2 x. ( abs ` A ) ) x. ( sqrt ` D ) ) ) ) | 
						
							| 106 | 41 50 94 | subdid |  |-  ( ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A =/= 0 \/ B =/= 0 ) ) /\ ( R e. RR+ /\ 0 <_ D ) /\ ( X e. RR /\ Y e. RR ) ) -> ( 2 x. ( ( B x. C ) - ( ( abs ` A ) x. ( sqrt ` D ) ) ) ) = ( ( 2 x. ( B x. C ) ) - ( 2 x. ( ( abs ` A ) x. ( sqrt ` D ) ) ) ) ) | 
						
							| 107 | 104 105 106 | 3eqtr4d |  |-  ( ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A =/= 0 \/ B =/= 0 ) ) /\ ( R e. RR+ /\ 0 <_ D ) /\ ( X e. RR /\ Y e. RR ) ) -> ( -u -u ( 2 x. ( B x. C ) ) - ( sqrt ` ( ( -u ( 2 x. ( B x. C ) ) ^ 2 ) - ( 4 x. ( Q x. ( ( C ^ 2 ) - ( ( A ^ 2 ) x. ( R ^ 2 ) ) ) ) ) ) ) ) = ( 2 x. ( ( B x. C ) - ( ( abs ` A ) x. ( sqrt ` D ) ) ) ) ) | 
						
							| 108 | 107 | oveq1d |  |-  ( ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A =/= 0 \/ B =/= 0 ) ) /\ ( R e. RR+ /\ 0 <_ D ) /\ ( X e. RR /\ Y e. RR ) ) -> ( ( -u -u ( 2 x. ( B x. C ) ) - ( sqrt ` ( ( -u ( 2 x. ( B x. C ) ) ^ 2 ) - ( 4 x. ( Q x. ( ( C ^ 2 ) - ( ( A ^ 2 ) x. ( R ^ 2 ) ) ) ) ) ) ) ) / ( 2 x. Q ) ) = ( ( 2 x. ( ( B x. C ) - ( ( abs ` A ) x. ( sqrt ` D ) ) ) ) / ( 2 x. Q ) ) ) | 
						
							| 109 | 50 94 | subcld |  |-  ( ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A =/= 0 \/ B =/= 0 ) ) /\ ( R e. RR+ /\ 0 <_ D ) /\ ( X e. RR /\ Y e. RR ) ) -> ( ( B x. C ) - ( ( abs ` A ) x. ( sqrt ` D ) ) ) e. CC ) | 
						
							| 110 | 109 13 41 40 100 | divcan5d |  |-  ( ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A =/= 0 \/ B =/= 0 ) ) /\ ( R e. RR+ /\ 0 <_ D ) /\ ( X e. RR /\ Y e. RR ) ) -> ( ( 2 x. ( ( B x. C ) - ( ( abs ` A ) x. ( sqrt ` D ) ) ) ) / ( 2 x. Q ) ) = ( ( ( B x. C ) - ( ( abs ` A ) x. ( sqrt ` D ) ) ) / Q ) ) | 
						
							| 111 | 108 110 | eqtrd |  |-  ( ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A =/= 0 \/ B =/= 0 ) ) /\ ( R e. RR+ /\ 0 <_ D ) /\ ( X e. RR /\ Y e. RR ) ) -> ( ( -u -u ( 2 x. ( B x. C ) ) - ( sqrt ` ( ( -u ( 2 x. ( B x. C ) ) ^ 2 ) - ( 4 x. ( Q x. ( ( C ^ 2 ) - ( ( A ^ 2 ) x. ( R ^ 2 ) ) ) ) ) ) ) ) / ( 2 x. Q ) ) = ( ( ( B x. C ) - ( ( abs ` A ) x. ( sqrt ` D ) ) ) / Q ) ) | 
						
							| 112 | 111 | eqeq2d |  |-  ( ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A =/= 0 \/ B =/= 0 ) ) /\ ( R e. RR+ /\ 0 <_ D ) /\ ( X e. RR /\ Y e. RR ) ) -> ( Y = ( ( -u -u ( 2 x. ( B x. C ) ) - ( sqrt ` ( ( -u ( 2 x. ( B x. C ) ) ^ 2 ) - ( 4 x. ( Q x. ( ( C ^ 2 ) - ( ( A ^ 2 ) x. ( R ^ 2 ) ) ) ) ) ) ) ) / ( 2 x. Q ) ) <-> Y = ( ( ( B x. C ) - ( ( abs ` A ) x. ( sqrt ` D ) ) ) / Q ) ) ) | 
						
							| 113 | 103 112 | orbi12d |  |-  ( ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A =/= 0 \/ B =/= 0 ) ) /\ ( R e. RR+ /\ 0 <_ D ) /\ ( X e. RR /\ Y e. RR ) ) -> ( ( Y = ( ( -u -u ( 2 x. ( B x. C ) ) + ( sqrt ` ( ( -u ( 2 x. ( B x. C ) ) ^ 2 ) - ( 4 x. ( Q x. ( ( C ^ 2 ) - ( ( A ^ 2 ) x. ( R ^ 2 ) ) ) ) ) ) ) ) / ( 2 x. Q ) ) \/ Y = ( ( -u -u ( 2 x. ( B x. C ) ) - ( sqrt ` ( ( -u ( 2 x. ( B x. C ) ) ^ 2 ) - ( 4 x. ( Q x. ( ( C ^ 2 ) - ( ( A ^ 2 ) x. ( R ^ 2 ) ) ) ) ) ) ) ) / ( 2 x. Q ) ) ) <-> ( Y = ( ( ( B x. C ) + ( ( abs ` A ) x. ( sqrt ` D ) ) ) / Q ) \/ Y = ( ( ( B x. C ) - ( ( abs ` A ) x. ( sqrt ` D ) ) ) / Q ) ) ) ) | 
						
							| 114 | 69 113 | bitrd |  |-  ( ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A =/= 0 \/ B =/= 0 ) ) /\ ( R e. RR+ /\ 0 <_ D ) /\ ( X e. RR /\ Y e. RR ) ) -> ( ( ( Q x. ( Y ^ 2 ) ) + ( ( -u ( 2 x. ( B x. C ) ) x. Y ) + ( ( C ^ 2 ) - ( ( A ^ 2 ) x. ( R ^ 2 ) ) ) ) ) = 0 <-> ( Y = ( ( ( B x. C ) + ( ( abs ` A ) x. ( sqrt ` D ) ) ) / Q ) \/ Y = ( ( ( B x. C ) - ( ( abs ` A ) x. ( sqrt ` D ) ) ) / Q ) ) ) ) | 
						
							| 115 |  | absid |  |-  ( ( A e. RR /\ 0 <_ A ) -> ( abs ` A ) = A ) | 
						
							| 116 | 115 | ex |  |-  ( A e. RR -> ( 0 <_ A -> ( abs ` A ) = A ) ) | 
						
							| 117 | 116 | 3ad2ant1 |  |-  ( ( A e. RR /\ B e. RR /\ C e. RR ) -> ( 0 <_ A -> ( abs ` A ) = A ) ) | 
						
							| 118 | 117 | adantr |  |-  ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A =/= 0 \/ B =/= 0 ) ) -> ( 0 <_ A -> ( abs ` A ) = A ) ) | 
						
							| 119 | 118 | 3ad2ant1 |  |-  ( ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A =/= 0 \/ B =/= 0 ) ) /\ ( R e. RR+ /\ 0 <_ D ) /\ ( X e. RR /\ Y e. RR ) ) -> ( 0 <_ A -> ( abs ` A ) = A ) ) | 
						
							| 120 | 119 | impcom |  |-  ( ( 0 <_ A /\ ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A =/= 0 \/ B =/= 0 ) ) /\ ( R e. RR+ /\ 0 <_ D ) /\ ( X e. RR /\ Y e. RR ) ) ) -> ( abs ` A ) = A ) | 
						
							| 121 | 120 | oveq1d |  |-  ( ( 0 <_ A /\ ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A =/= 0 \/ B =/= 0 ) ) /\ ( R e. RR+ /\ 0 <_ D ) /\ ( X e. RR /\ Y e. RR ) ) ) -> ( ( abs ` A ) x. ( sqrt ` D ) ) = ( A x. ( sqrt ` D ) ) ) | 
						
							| 122 | 121 | oveq2d |  |-  ( ( 0 <_ A /\ ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A =/= 0 \/ B =/= 0 ) ) /\ ( R e. RR+ /\ 0 <_ D ) /\ ( X e. RR /\ Y e. RR ) ) ) -> ( ( B x. C ) + ( ( abs ` A ) x. ( sqrt ` D ) ) ) = ( ( B x. C ) + ( A x. ( sqrt ` D ) ) ) ) | 
						
							| 123 | 122 | oveq1d |  |-  ( ( 0 <_ A /\ ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A =/= 0 \/ B =/= 0 ) ) /\ ( R e. RR+ /\ 0 <_ D ) /\ ( X e. RR /\ Y e. RR ) ) ) -> ( ( ( B x. C ) + ( ( abs ` A ) x. ( sqrt ` D ) ) ) / Q ) = ( ( ( B x. C ) + ( A x. ( sqrt ` D ) ) ) / Q ) ) | 
						
							| 124 | 123 | eqeq2d |  |-  ( ( 0 <_ A /\ ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A =/= 0 \/ B =/= 0 ) ) /\ ( R e. RR+ /\ 0 <_ D ) /\ ( X e. RR /\ Y e. RR ) ) ) -> ( Y = ( ( ( B x. C ) + ( ( abs ` A ) x. ( sqrt ` D ) ) ) / Q ) <-> Y = ( ( ( B x. C ) + ( A x. ( sqrt ` D ) ) ) / Q ) ) ) | 
						
							| 125 | 121 | oveq2d |  |-  ( ( 0 <_ A /\ ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A =/= 0 \/ B =/= 0 ) ) /\ ( R e. RR+ /\ 0 <_ D ) /\ ( X e. RR /\ Y e. RR ) ) ) -> ( ( B x. C ) - ( ( abs ` A ) x. ( sqrt ` D ) ) ) = ( ( B x. C ) - ( A x. ( sqrt ` D ) ) ) ) | 
						
							| 126 | 125 | oveq1d |  |-  ( ( 0 <_ A /\ ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A =/= 0 \/ B =/= 0 ) ) /\ ( R e. RR+ /\ 0 <_ D ) /\ ( X e. RR /\ Y e. RR ) ) ) -> ( ( ( B x. C ) - ( ( abs ` A ) x. ( sqrt ` D ) ) ) / Q ) = ( ( ( B x. C ) - ( A x. ( sqrt ` D ) ) ) / Q ) ) | 
						
							| 127 | 126 | eqeq2d |  |-  ( ( 0 <_ A /\ ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A =/= 0 \/ B =/= 0 ) ) /\ ( R e. RR+ /\ 0 <_ D ) /\ ( X e. RR /\ Y e. RR ) ) ) -> ( Y = ( ( ( B x. C ) - ( ( abs ` A ) x. ( sqrt ` D ) ) ) / Q ) <-> Y = ( ( ( B x. C ) - ( A x. ( sqrt ` D ) ) ) / Q ) ) ) | 
						
							| 128 | 124 127 | orbi12d |  |-  ( ( 0 <_ A /\ ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A =/= 0 \/ B =/= 0 ) ) /\ ( R e. RR+ /\ 0 <_ D ) /\ ( X e. RR /\ Y e. RR ) ) ) -> ( ( Y = ( ( ( B x. C ) + ( ( abs ` A ) x. ( sqrt ` D ) ) ) / Q ) \/ Y = ( ( ( B x. C ) - ( ( abs ` A ) x. ( sqrt ` D ) ) ) / Q ) ) <-> ( Y = ( ( ( B x. C ) + ( A x. ( sqrt ` D ) ) ) / Q ) \/ Y = ( ( ( B x. C ) - ( A x. ( sqrt ` D ) ) ) / Q ) ) ) ) | 
						
							| 129 |  | pm1.4 |  |-  ( ( Y = ( ( ( B x. C ) + ( A x. ( sqrt ` D ) ) ) / Q ) \/ Y = ( ( ( B x. C ) - ( A x. ( sqrt ` D ) ) ) / Q ) ) -> ( Y = ( ( ( B x. C ) - ( A x. ( sqrt ` D ) ) ) / Q ) \/ Y = ( ( ( B x. C ) + ( A x. ( sqrt ` D ) ) ) / Q ) ) ) | 
						
							| 130 | 128 129 | biimtrdi |  |-  ( ( 0 <_ A /\ ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A =/= 0 \/ B =/= 0 ) ) /\ ( R e. RR+ /\ 0 <_ D ) /\ ( X e. RR /\ Y e. RR ) ) ) -> ( ( Y = ( ( ( B x. C ) + ( ( abs ` A ) x. ( sqrt ` D ) ) ) / Q ) \/ Y = ( ( ( B x. C ) - ( ( abs ` A ) x. ( sqrt ` D ) ) ) / Q ) ) -> ( Y = ( ( ( B x. C ) - ( A x. ( sqrt ` D ) ) ) / Q ) \/ Y = ( ( ( B x. C ) + ( A x. ( sqrt ` D ) ) ) / Q ) ) ) ) | 
						
							| 131 | 50 | adantl |  |-  ( ( -. 0 <_ A /\ ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A =/= 0 \/ B =/= 0 ) ) /\ ( R e. RR+ /\ 0 <_ D ) /\ ( X e. RR /\ Y e. RR ) ) ) -> ( B x. C ) e. CC ) | 
						
							| 132 | 94 | adantl |  |-  ( ( -. 0 <_ A /\ ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A =/= 0 \/ B =/= 0 ) ) /\ ( R e. RR+ /\ 0 <_ D ) /\ ( X e. RR /\ Y e. RR ) ) ) -> ( ( abs ` A ) x. ( sqrt ` D ) ) e. CC ) | 
						
							| 133 | 131 132 | subnegd |  |-  ( ( -. 0 <_ A /\ ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A =/= 0 \/ B =/= 0 ) ) /\ ( R e. RR+ /\ 0 <_ D ) /\ ( X e. RR /\ Y e. RR ) ) ) -> ( ( B x. C ) - -u ( ( abs ` A ) x. ( sqrt ` D ) ) ) = ( ( B x. C ) + ( ( abs ` A ) x. ( sqrt ` D ) ) ) ) | 
						
							| 134 | 74 | adantl |  |-  ( ( -. 0 <_ A /\ ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A =/= 0 \/ B =/= 0 ) ) /\ ( R e. RR+ /\ 0 <_ D ) /\ ( X e. RR /\ Y e. RR ) ) ) -> ( abs ` A ) e. CC ) | 
						
							| 135 | 84 | adantl |  |-  ( ( -. 0 <_ A /\ ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A =/= 0 \/ B =/= 0 ) ) /\ ( R e. RR+ /\ 0 <_ D ) /\ ( X e. RR /\ Y e. RR ) ) ) -> ( sqrt ` D ) e. CC ) | 
						
							| 136 | 134 135 | mulneg1d |  |-  ( ( -. 0 <_ A /\ ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A =/= 0 \/ B =/= 0 ) ) /\ ( R e. RR+ /\ 0 <_ D ) /\ ( X e. RR /\ Y e. RR ) ) ) -> ( -u ( abs ` A ) x. ( sqrt ` D ) ) = -u ( ( abs ` A ) x. ( sqrt ` D ) ) ) | 
						
							| 137 | 89 | simp1d |  |-  ( ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A =/= 0 \/ B =/= 0 ) ) /\ ( R e. RR+ /\ 0 <_ D ) /\ ( X e. RR /\ Y e. RR ) ) -> A e. RR ) | 
						
							| 138 | 137 | adantl |  |-  ( ( -. 0 <_ A /\ ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A =/= 0 \/ B =/= 0 ) ) /\ ( R e. RR+ /\ 0 <_ D ) /\ ( X e. RR /\ Y e. RR ) ) ) -> A e. RR ) | 
						
							| 139 |  | id |  |-  ( A e. RR -> A e. RR ) | 
						
							| 140 |  | 0red |  |-  ( A e. RR -> 0 e. RR ) | 
						
							| 141 | 139 140 | ltnled |  |-  ( A e. RR -> ( A < 0 <-> -. 0 <_ A ) ) | 
						
							| 142 |  | ltle |  |-  ( ( A e. RR /\ 0 e. RR ) -> ( A < 0 -> A <_ 0 ) ) | 
						
							| 143 | 140 142 | mpdan |  |-  ( A e. RR -> ( A < 0 -> A <_ 0 ) ) | 
						
							| 144 | 141 143 | sylbird |  |-  ( A e. RR -> ( -. 0 <_ A -> A <_ 0 ) ) | 
						
							| 145 | 144 | 3ad2ant1 |  |-  ( ( A e. RR /\ B e. RR /\ C e. RR ) -> ( -. 0 <_ A -> A <_ 0 ) ) | 
						
							| 146 | 145 | adantr |  |-  ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A =/= 0 \/ B =/= 0 ) ) -> ( -. 0 <_ A -> A <_ 0 ) ) | 
						
							| 147 | 146 | 3ad2ant1 |  |-  ( ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A =/= 0 \/ B =/= 0 ) ) /\ ( R e. RR+ /\ 0 <_ D ) /\ ( X e. RR /\ Y e. RR ) ) -> ( -. 0 <_ A -> A <_ 0 ) ) | 
						
							| 148 | 147 | impcom |  |-  ( ( -. 0 <_ A /\ ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A =/= 0 \/ B =/= 0 ) ) /\ ( R e. RR+ /\ 0 <_ D ) /\ ( X e. RR /\ Y e. RR ) ) ) -> A <_ 0 ) | 
						
							| 149 | 138 148 | absnidd |  |-  ( ( -. 0 <_ A /\ ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A =/= 0 \/ B =/= 0 ) ) /\ ( R e. RR+ /\ 0 <_ D ) /\ ( X e. RR /\ Y e. RR ) ) ) -> ( abs ` A ) = -u A ) | 
						
							| 150 | 149 | negeqd |  |-  ( ( -. 0 <_ A /\ ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A =/= 0 \/ B =/= 0 ) ) /\ ( R e. RR+ /\ 0 <_ D ) /\ ( X e. RR /\ Y e. RR ) ) ) -> -u ( abs ` A ) = -u -u A ) | 
						
							| 151 | 57 | adantl |  |-  ( ( -. 0 <_ A /\ ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A =/= 0 \/ B =/= 0 ) ) /\ ( R e. RR+ /\ 0 <_ D ) /\ ( X e. RR /\ Y e. RR ) ) ) -> A e. CC ) | 
						
							| 152 | 151 | negnegd |  |-  ( ( -. 0 <_ A /\ ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A =/= 0 \/ B =/= 0 ) ) /\ ( R e. RR+ /\ 0 <_ D ) /\ ( X e. RR /\ Y e. RR ) ) ) -> -u -u A = A ) | 
						
							| 153 | 150 152 | eqtrd |  |-  ( ( -. 0 <_ A /\ ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A =/= 0 \/ B =/= 0 ) ) /\ ( R e. RR+ /\ 0 <_ D ) /\ ( X e. RR /\ Y e. RR ) ) ) -> -u ( abs ` A ) = A ) | 
						
							| 154 | 153 | oveq1d |  |-  ( ( -. 0 <_ A /\ ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A =/= 0 \/ B =/= 0 ) ) /\ ( R e. RR+ /\ 0 <_ D ) /\ ( X e. RR /\ Y e. RR ) ) ) -> ( -u ( abs ` A ) x. ( sqrt ` D ) ) = ( A x. ( sqrt ` D ) ) ) | 
						
							| 155 | 136 154 | eqtr3d |  |-  ( ( -. 0 <_ A /\ ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A =/= 0 \/ B =/= 0 ) ) /\ ( R e. RR+ /\ 0 <_ D ) /\ ( X e. RR /\ Y e. RR ) ) ) -> -u ( ( abs ` A ) x. ( sqrt ` D ) ) = ( A x. ( sqrt ` D ) ) ) | 
						
							| 156 | 155 | oveq2d |  |-  ( ( -. 0 <_ A /\ ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A =/= 0 \/ B =/= 0 ) ) /\ ( R e. RR+ /\ 0 <_ D ) /\ ( X e. RR /\ Y e. RR ) ) ) -> ( ( B x. C ) - -u ( ( abs ` A ) x. ( sqrt ` D ) ) ) = ( ( B x. C ) - ( A x. ( sqrt ` D ) ) ) ) | 
						
							| 157 | 133 156 | eqtr3d |  |-  ( ( -. 0 <_ A /\ ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A =/= 0 \/ B =/= 0 ) ) /\ ( R e. RR+ /\ 0 <_ D ) /\ ( X e. RR /\ Y e. RR ) ) ) -> ( ( B x. C ) + ( ( abs ` A ) x. ( sqrt ` D ) ) ) = ( ( B x. C ) - ( A x. ( sqrt ` D ) ) ) ) | 
						
							| 158 | 157 | oveq1d |  |-  ( ( -. 0 <_ A /\ ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A =/= 0 \/ B =/= 0 ) ) /\ ( R e. RR+ /\ 0 <_ D ) /\ ( X e. RR /\ Y e. RR ) ) ) -> ( ( ( B x. C ) + ( ( abs ` A ) x. ( sqrt ` D ) ) ) / Q ) = ( ( ( B x. C ) - ( A x. ( sqrt ` D ) ) ) / Q ) ) | 
						
							| 159 | 158 | eqeq2d |  |-  ( ( -. 0 <_ A /\ ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A =/= 0 \/ B =/= 0 ) ) /\ ( R e. RR+ /\ 0 <_ D ) /\ ( X e. RR /\ Y e. RR ) ) ) -> ( Y = ( ( ( B x. C ) + ( ( abs ` A ) x. ( sqrt ` D ) ) ) / Q ) <-> Y = ( ( ( B x. C ) - ( A x. ( sqrt ` D ) ) ) / Q ) ) ) | 
						
							| 160 | 131 132 | negsubd |  |-  ( ( -. 0 <_ A /\ ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A =/= 0 \/ B =/= 0 ) ) /\ ( R e. RR+ /\ 0 <_ D ) /\ ( X e. RR /\ Y e. RR ) ) ) -> ( ( B x. C ) + -u ( ( abs ` A ) x. ( sqrt ` D ) ) ) = ( ( B x. C ) - ( ( abs ` A ) x. ( sqrt ` D ) ) ) ) | 
						
							| 161 | 155 | oveq2d |  |-  ( ( -. 0 <_ A /\ ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A =/= 0 \/ B =/= 0 ) ) /\ ( R e. RR+ /\ 0 <_ D ) /\ ( X e. RR /\ Y e. RR ) ) ) -> ( ( B x. C ) + -u ( ( abs ` A ) x. ( sqrt ` D ) ) ) = ( ( B x. C ) + ( A x. ( sqrt ` D ) ) ) ) | 
						
							| 162 | 160 161 | eqtr3d |  |-  ( ( -. 0 <_ A /\ ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A =/= 0 \/ B =/= 0 ) ) /\ ( R e. RR+ /\ 0 <_ D ) /\ ( X e. RR /\ Y e. RR ) ) ) -> ( ( B x. C ) - ( ( abs ` A ) x. ( sqrt ` D ) ) ) = ( ( B x. C ) + ( A x. ( sqrt ` D ) ) ) ) | 
						
							| 163 | 162 | oveq1d |  |-  ( ( -. 0 <_ A /\ ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A =/= 0 \/ B =/= 0 ) ) /\ ( R e. RR+ /\ 0 <_ D ) /\ ( X e. RR /\ Y e. RR ) ) ) -> ( ( ( B x. C ) - ( ( abs ` A ) x. ( sqrt ` D ) ) ) / Q ) = ( ( ( B x. C ) + ( A x. ( sqrt ` D ) ) ) / Q ) ) | 
						
							| 164 | 163 | eqeq2d |  |-  ( ( -. 0 <_ A /\ ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A =/= 0 \/ B =/= 0 ) ) /\ ( R e. RR+ /\ 0 <_ D ) /\ ( X e. RR /\ Y e. RR ) ) ) -> ( Y = ( ( ( B x. C ) - ( ( abs ` A ) x. ( sqrt ` D ) ) ) / Q ) <-> Y = ( ( ( B x. C ) + ( A x. ( sqrt ` D ) ) ) / Q ) ) ) | 
						
							| 165 | 159 164 | orbi12d |  |-  ( ( -. 0 <_ A /\ ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A =/= 0 \/ B =/= 0 ) ) /\ ( R e. RR+ /\ 0 <_ D ) /\ ( X e. RR /\ Y e. RR ) ) ) -> ( ( Y = ( ( ( B x. C ) + ( ( abs ` A ) x. ( sqrt ` D ) ) ) / Q ) \/ Y = ( ( ( B x. C ) - ( ( abs ` A ) x. ( sqrt ` D ) ) ) / Q ) ) <-> ( Y = ( ( ( B x. C ) - ( A x. ( sqrt ` D ) ) ) / Q ) \/ Y = ( ( ( B x. C ) + ( A x. ( sqrt ` D ) ) ) / Q ) ) ) ) | 
						
							| 166 | 165 | biimpd |  |-  ( ( -. 0 <_ A /\ ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A =/= 0 \/ B =/= 0 ) ) /\ ( R e. RR+ /\ 0 <_ D ) /\ ( X e. RR /\ Y e. RR ) ) ) -> ( ( Y = ( ( ( B x. C ) + ( ( abs ` A ) x. ( sqrt ` D ) ) ) / Q ) \/ Y = ( ( ( B x. C ) - ( ( abs ` A ) x. ( sqrt ` D ) ) ) / Q ) ) -> ( Y = ( ( ( B x. C ) - ( A x. ( sqrt ` D ) ) ) / Q ) \/ Y = ( ( ( B x. C ) + ( A x. ( sqrt ` D ) ) ) / Q ) ) ) ) | 
						
							| 167 | 130 166 | pm2.61ian |  |-  ( ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A =/= 0 \/ B =/= 0 ) ) /\ ( R e. RR+ /\ 0 <_ D ) /\ ( X e. RR /\ Y e. RR ) ) -> ( ( Y = ( ( ( B x. C ) + ( ( abs ` A ) x. ( sqrt ` D ) ) ) / Q ) \/ Y = ( ( ( B x. C ) - ( ( abs ` A ) x. ( sqrt ` D ) ) ) / Q ) ) -> ( Y = ( ( ( B x. C ) - ( A x. ( sqrt ` D ) ) ) / Q ) \/ Y = ( ( ( B x. C ) + ( A x. ( sqrt ` D ) ) ) / Q ) ) ) ) | 
						
							| 168 | 114 167 | sylbid |  |-  ( ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A =/= 0 \/ B =/= 0 ) ) /\ ( R e. RR+ /\ 0 <_ D ) /\ ( X e. RR /\ Y e. RR ) ) -> ( ( ( Q x. ( Y ^ 2 ) ) + ( ( -u ( 2 x. ( B x. C ) ) x. Y ) + ( ( C ^ 2 ) - ( ( A ^ 2 ) x. ( R ^ 2 ) ) ) ) ) = 0 -> ( Y = ( ( ( B x. C ) - ( A x. ( sqrt ` D ) ) ) / Q ) \/ Y = ( ( ( B x. C ) + ( A x. ( sqrt ` D ) ) ) / Q ) ) ) ) | 
						
							| 169 | 7 168 | syld |  |-  ( ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A =/= 0 \/ B =/= 0 ) ) /\ ( R e. RR+ /\ 0 <_ D ) /\ ( X e. RR /\ Y e. RR ) ) -> ( ( ( ( X ^ 2 ) + ( Y ^ 2 ) ) = ( R ^ 2 ) /\ ( ( A x. X ) + ( B x. Y ) ) = C ) -> ( Y = ( ( ( B x. C ) - ( A x. ( sqrt ` D ) ) ) / Q ) \/ Y = ( ( ( B x. C ) + ( A x. ( sqrt ` D ) ) ) / Q ) ) ) ) |