Step |
Hyp |
Ref |
Expression |
1 |
|
itscnhlc0yqe.q |
|- Q = ( ( A ^ 2 ) + ( B ^ 2 ) ) |
2 |
|
itsclc0yqsol.d |
|- D = ( ( ( R ^ 2 ) x. Q ) - ( C ^ 2 ) ) |
3 |
|
eqid |
|- -u ( 2 x. ( B x. C ) ) = -u ( 2 x. ( B x. C ) ) |
4 |
|
eqid |
|- ( ( C ^ 2 ) - ( ( A ^ 2 ) x. ( R ^ 2 ) ) ) = ( ( C ^ 2 ) - ( ( A ^ 2 ) x. ( R ^ 2 ) ) ) |
5 |
1 3 4
|
itsclc0yqe |
|- ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ R e. RR+ /\ ( X e. RR /\ Y e. RR ) ) -> ( ( ( ( X ^ 2 ) + ( Y ^ 2 ) ) = ( R ^ 2 ) /\ ( ( A x. X ) + ( B x. Y ) ) = C ) -> ( ( Q x. ( Y ^ 2 ) ) + ( ( -u ( 2 x. ( B x. C ) ) x. Y ) + ( ( C ^ 2 ) - ( ( A ^ 2 ) x. ( R ^ 2 ) ) ) ) ) = 0 ) ) |
6 |
5
|
3adant1r |
|- ( ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A =/= 0 \/ B =/= 0 ) ) /\ R e. RR+ /\ ( X e. RR /\ Y e. RR ) ) -> ( ( ( ( X ^ 2 ) + ( Y ^ 2 ) ) = ( R ^ 2 ) /\ ( ( A x. X ) + ( B x. Y ) ) = C ) -> ( ( Q x. ( Y ^ 2 ) ) + ( ( -u ( 2 x. ( B x. C ) ) x. Y ) + ( ( C ^ 2 ) - ( ( A ^ 2 ) x. ( R ^ 2 ) ) ) ) ) = 0 ) ) |
7 |
6
|
3adant2r |
|- ( ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A =/= 0 \/ B =/= 0 ) ) /\ ( R e. RR+ /\ 0 <_ D ) /\ ( X e. RR /\ Y e. RR ) ) -> ( ( ( ( X ^ 2 ) + ( Y ^ 2 ) ) = ( R ^ 2 ) /\ ( ( A x. X ) + ( B x. Y ) ) = C ) -> ( ( Q x. ( Y ^ 2 ) ) + ( ( -u ( 2 x. ( B x. C ) ) x. Y ) + ( ( C ^ 2 ) - ( ( A ^ 2 ) x. ( R ^ 2 ) ) ) ) ) = 0 ) ) |
8 |
|
3simpa |
|- ( ( A e. RR /\ B e. RR /\ C e. RR ) -> ( A e. RR /\ B e. RR ) ) |
9 |
8
|
adantr |
|- ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A =/= 0 \/ B =/= 0 ) ) -> ( A e. RR /\ B e. RR ) ) |
10 |
1
|
resum2sqcl |
|- ( ( A e. RR /\ B e. RR ) -> Q e. RR ) |
11 |
9 10
|
syl |
|- ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A =/= 0 \/ B =/= 0 ) ) -> Q e. RR ) |
12 |
11
|
3ad2ant1 |
|- ( ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A =/= 0 \/ B =/= 0 ) ) /\ ( R e. RR+ /\ 0 <_ D ) /\ ( X e. RR /\ Y e. RR ) ) -> Q e. RR ) |
13 |
12
|
recnd |
|- ( ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A =/= 0 \/ B =/= 0 ) ) /\ ( R e. RR+ /\ 0 <_ D ) /\ ( X e. RR /\ Y e. RR ) ) -> Q e. CC ) |
14 |
|
simpr1 |
|- ( ( A =/= 0 /\ ( A e. RR /\ B e. RR /\ C e. RR ) ) -> A e. RR ) |
15 |
|
simpl |
|- ( ( A =/= 0 /\ ( A e. RR /\ B e. RR /\ C e. RR ) ) -> A =/= 0 ) |
16 |
|
simpr2 |
|- ( ( A =/= 0 /\ ( A e. RR /\ B e. RR /\ C e. RR ) ) -> B e. RR ) |
17 |
1
|
resum2sqgt0 |
|- ( ( ( A e. RR /\ A =/= 0 ) /\ B e. RR ) -> 0 < Q ) |
18 |
14 15 16 17
|
syl21anc |
|- ( ( A =/= 0 /\ ( A e. RR /\ B e. RR /\ C e. RR ) ) -> 0 < Q ) |
19 |
18
|
ex |
|- ( A =/= 0 -> ( ( A e. RR /\ B e. RR /\ C e. RR ) -> 0 < Q ) ) |
20 |
|
simpr2 |
|- ( ( B =/= 0 /\ ( A e. RR /\ B e. RR /\ C e. RR ) ) -> B e. RR ) |
21 |
|
simpl |
|- ( ( B =/= 0 /\ ( A e. RR /\ B e. RR /\ C e. RR ) ) -> B =/= 0 ) |
22 |
|
simpr1 |
|- ( ( B =/= 0 /\ ( A e. RR /\ B e. RR /\ C e. RR ) ) -> A e. RR ) |
23 |
|
eqid |
|- ( ( B ^ 2 ) + ( A ^ 2 ) ) = ( ( B ^ 2 ) + ( A ^ 2 ) ) |
24 |
23
|
resum2sqgt0 |
|- ( ( ( B e. RR /\ B =/= 0 ) /\ A e. RR ) -> 0 < ( ( B ^ 2 ) + ( A ^ 2 ) ) ) |
25 |
20 21 22 24
|
syl21anc |
|- ( ( B =/= 0 /\ ( A e. RR /\ B e. RR /\ C e. RR ) ) -> 0 < ( ( B ^ 2 ) + ( A ^ 2 ) ) ) |
26 |
|
simp1 |
|- ( ( A e. RR /\ B e. RR /\ C e. RR ) -> A e. RR ) |
27 |
26
|
recnd |
|- ( ( A e. RR /\ B e. RR /\ C e. RR ) -> A e. CC ) |
28 |
27
|
sqcld |
|- ( ( A e. RR /\ B e. RR /\ C e. RR ) -> ( A ^ 2 ) e. CC ) |
29 |
|
simp2 |
|- ( ( A e. RR /\ B e. RR /\ C e. RR ) -> B e. RR ) |
30 |
29
|
recnd |
|- ( ( A e. RR /\ B e. RR /\ C e. RR ) -> B e. CC ) |
31 |
30
|
sqcld |
|- ( ( A e. RR /\ B e. RR /\ C e. RR ) -> ( B ^ 2 ) e. CC ) |
32 |
28 31
|
addcomd |
|- ( ( A e. RR /\ B e. RR /\ C e. RR ) -> ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( ( B ^ 2 ) + ( A ^ 2 ) ) ) |
33 |
32
|
adantl |
|- ( ( B =/= 0 /\ ( A e. RR /\ B e. RR /\ C e. RR ) ) -> ( ( A ^ 2 ) + ( B ^ 2 ) ) = ( ( B ^ 2 ) + ( A ^ 2 ) ) ) |
34 |
1 33
|
syl5eq |
|- ( ( B =/= 0 /\ ( A e. RR /\ B e. RR /\ C e. RR ) ) -> Q = ( ( B ^ 2 ) + ( A ^ 2 ) ) ) |
35 |
25 34
|
breqtrrd |
|- ( ( B =/= 0 /\ ( A e. RR /\ B e. RR /\ C e. RR ) ) -> 0 < Q ) |
36 |
35
|
ex |
|- ( B =/= 0 -> ( ( A e. RR /\ B e. RR /\ C e. RR ) -> 0 < Q ) ) |
37 |
19 36
|
jaoi |
|- ( ( A =/= 0 \/ B =/= 0 ) -> ( ( A e. RR /\ B e. RR /\ C e. RR ) -> 0 < Q ) ) |
38 |
37
|
impcom |
|- ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A =/= 0 \/ B =/= 0 ) ) -> 0 < Q ) |
39 |
38
|
gt0ne0d |
|- ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A =/= 0 \/ B =/= 0 ) ) -> Q =/= 0 ) |
40 |
39
|
3ad2ant1 |
|- ( ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A =/= 0 \/ B =/= 0 ) ) /\ ( R e. RR+ /\ 0 <_ D ) /\ ( X e. RR /\ Y e. RR ) ) -> Q =/= 0 ) |
41 |
|
2cnd |
|- ( ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A =/= 0 \/ B =/= 0 ) ) /\ ( R e. RR+ /\ 0 <_ D ) /\ ( X e. RR /\ Y e. RR ) ) -> 2 e. CC ) |
42 |
|
recn |
|- ( B e. RR -> B e. CC ) |
43 |
42
|
3ad2ant2 |
|- ( ( A e. RR /\ B e. RR /\ C e. RR ) -> B e. CC ) |
44 |
43
|
adantr |
|- ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A =/= 0 \/ B =/= 0 ) ) -> B e. CC ) |
45 |
44
|
3ad2ant1 |
|- ( ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A =/= 0 \/ B =/= 0 ) ) /\ ( R e. RR+ /\ 0 <_ D ) /\ ( X e. RR /\ Y e. RR ) ) -> B e. CC ) |
46 |
|
recn |
|- ( C e. RR -> C e. CC ) |
47 |
46
|
3ad2ant3 |
|- ( ( A e. RR /\ B e. RR /\ C e. RR ) -> C e. CC ) |
48 |
47
|
adantr |
|- ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A =/= 0 \/ B =/= 0 ) ) -> C e. CC ) |
49 |
48
|
3ad2ant1 |
|- ( ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A =/= 0 \/ B =/= 0 ) ) /\ ( R e. RR+ /\ 0 <_ D ) /\ ( X e. RR /\ Y e. RR ) ) -> C e. CC ) |
50 |
45 49
|
mulcld |
|- ( ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A =/= 0 \/ B =/= 0 ) ) /\ ( R e. RR+ /\ 0 <_ D ) /\ ( X e. RR /\ Y e. RR ) ) -> ( B x. C ) e. CC ) |
51 |
41 50
|
mulcld |
|- ( ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A =/= 0 \/ B =/= 0 ) ) /\ ( R e. RR+ /\ 0 <_ D ) /\ ( X e. RR /\ Y e. RR ) ) -> ( 2 x. ( B x. C ) ) e. CC ) |
52 |
51
|
negcld |
|- ( ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A =/= 0 \/ B =/= 0 ) ) /\ ( R e. RR+ /\ 0 <_ D ) /\ ( X e. RR /\ Y e. RR ) ) -> -u ( 2 x. ( B x. C ) ) e. CC ) |
53 |
49
|
sqcld |
|- ( ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A =/= 0 \/ B =/= 0 ) ) /\ ( R e. RR+ /\ 0 <_ D ) /\ ( X e. RR /\ Y e. RR ) ) -> ( C ^ 2 ) e. CC ) |
54 |
|
recn |
|- ( A e. RR -> A e. CC ) |
55 |
54
|
3ad2ant1 |
|- ( ( A e. RR /\ B e. RR /\ C e. RR ) -> A e. CC ) |
56 |
55
|
adantr |
|- ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A =/= 0 \/ B =/= 0 ) ) -> A e. CC ) |
57 |
56
|
3ad2ant1 |
|- ( ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A =/= 0 \/ B =/= 0 ) ) /\ ( R e. RR+ /\ 0 <_ D ) /\ ( X e. RR /\ Y e. RR ) ) -> A e. CC ) |
58 |
57
|
sqcld |
|- ( ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A =/= 0 \/ B =/= 0 ) ) /\ ( R e. RR+ /\ 0 <_ D ) /\ ( X e. RR /\ Y e. RR ) ) -> ( A ^ 2 ) e. CC ) |
59 |
|
simpl |
|- ( ( R e. RR+ /\ 0 <_ D ) -> R e. RR+ ) |
60 |
59
|
rpcnd |
|- ( ( R e. RR+ /\ 0 <_ D ) -> R e. CC ) |
61 |
60
|
3ad2ant2 |
|- ( ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A =/= 0 \/ B =/= 0 ) ) /\ ( R e. RR+ /\ 0 <_ D ) /\ ( X e. RR /\ Y e. RR ) ) -> R e. CC ) |
62 |
61
|
sqcld |
|- ( ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A =/= 0 \/ B =/= 0 ) ) /\ ( R e. RR+ /\ 0 <_ D ) /\ ( X e. RR /\ Y e. RR ) ) -> ( R ^ 2 ) e. CC ) |
63 |
58 62
|
mulcld |
|- ( ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A =/= 0 \/ B =/= 0 ) ) /\ ( R e. RR+ /\ 0 <_ D ) /\ ( X e. RR /\ Y e. RR ) ) -> ( ( A ^ 2 ) x. ( R ^ 2 ) ) e. CC ) |
64 |
53 63
|
subcld |
|- ( ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A =/= 0 \/ B =/= 0 ) ) /\ ( R e. RR+ /\ 0 <_ D ) /\ ( X e. RR /\ Y e. RR ) ) -> ( ( C ^ 2 ) - ( ( A ^ 2 ) x. ( R ^ 2 ) ) ) e. CC ) |
65 |
|
recn |
|- ( Y e. RR -> Y e. CC ) |
66 |
65
|
adantl |
|- ( ( X e. RR /\ Y e. RR ) -> Y e. CC ) |
67 |
66
|
3ad2ant3 |
|- ( ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A =/= 0 \/ B =/= 0 ) ) /\ ( R e. RR+ /\ 0 <_ D ) /\ ( X e. RR /\ Y e. RR ) ) -> Y e. CC ) |
68 |
|
eqidd |
|- ( ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A =/= 0 \/ B =/= 0 ) ) /\ ( R e. RR+ /\ 0 <_ D ) /\ ( X e. RR /\ Y e. RR ) ) -> ( ( -u ( 2 x. ( B x. C ) ) ^ 2 ) - ( 4 x. ( Q x. ( ( C ^ 2 ) - ( ( A ^ 2 ) x. ( R ^ 2 ) ) ) ) ) ) = ( ( -u ( 2 x. ( B x. C ) ) ^ 2 ) - ( 4 x. ( Q x. ( ( C ^ 2 ) - ( ( A ^ 2 ) x. ( R ^ 2 ) ) ) ) ) ) ) |
69 |
13 40 52 64 67 68
|
quad |
|- ( ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A =/= 0 \/ B =/= 0 ) ) /\ ( R e. RR+ /\ 0 <_ D ) /\ ( X e. RR /\ Y e. RR ) ) -> ( ( ( Q x. ( Y ^ 2 ) ) + ( ( -u ( 2 x. ( B x. C ) ) x. Y ) + ( ( C ^ 2 ) - ( ( A ^ 2 ) x. ( R ^ 2 ) ) ) ) ) = 0 <-> ( Y = ( ( -u -u ( 2 x. ( B x. C ) ) + ( sqrt ` ( ( -u ( 2 x. ( B x. C ) ) ^ 2 ) - ( 4 x. ( Q x. ( ( C ^ 2 ) - ( ( A ^ 2 ) x. ( R ^ 2 ) ) ) ) ) ) ) ) / ( 2 x. Q ) ) \/ Y = ( ( -u -u ( 2 x. ( B x. C ) ) - ( sqrt ` ( ( -u ( 2 x. ( B x. C ) ) ^ 2 ) - ( 4 x. ( Q x. ( ( C ^ 2 ) - ( ( A ^ 2 ) x. ( R ^ 2 ) ) ) ) ) ) ) ) / ( 2 x. Q ) ) ) ) ) |
70 |
54
|
abscld |
|- ( A e. RR -> ( abs ` A ) e. RR ) |
71 |
70
|
recnd |
|- ( A e. RR -> ( abs ` A ) e. CC ) |
72 |
71
|
3ad2ant1 |
|- ( ( A e. RR /\ B e. RR /\ C e. RR ) -> ( abs ` A ) e. CC ) |
73 |
72
|
adantr |
|- ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A =/= 0 \/ B =/= 0 ) ) -> ( abs ` A ) e. CC ) |
74 |
73
|
3ad2ant1 |
|- ( ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A =/= 0 \/ B =/= 0 ) ) /\ ( R e. RR+ /\ 0 <_ D ) /\ ( X e. RR /\ Y e. RR ) ) -> ( abs ` A ) e. CC ) |
75 |
59
|
rpred |
|- ( ( R e. RR+ /\ 0 <_ D ) -> R e. RR ) |
76 |
75
|
3ad2ant2 |
|- ( ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A =/= 0 \/ B =/= 0 ) ) /\ ( R e. RR+ /\ 0 <_ D ) /\ ( X e. RR /\ Y e. RR ) ) -> R e. RR ) |
77 |
76
|
resqcld |
|- ( ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A =/= 0 \/ B =/= 0 ) ) /\ ( R e. RR+ /\ 0 <_ D ) /\ ( X e. RR /\ Y e. RR ) ) -> ( R ^ 2 ) e. RR ) |
78 |
77 12
|
remulcld |
|- ( ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A =/= 0 \/ B =/= 0 ) ) /\ ( R e. RR+ /\ 0 <_ D ) /\ ( X e. RR /\ Y e. RR ) ) -> ( ( R ^ 2 ) x. Q ) e. RR ) |
79 |
|
simp1l3 |
|- ( ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A =/= 0 \/ B =/= 0 ) ) /\ ( R e. RR+ /\ 0 <_ D ) /\ ( X e. RR /\ Y e. RR ) ) -> C e. RR ) |
80 |
79
|
resqcld |
|- ( ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A =/= 0 \/ B =/= 0 ) ) /\ ( R e. RR+ /\ 0 <_ D ) /\ ( X e. RR /\ Y e. RR ) ) -> ( C ^ 2 ) e. RR ) |
81 |
78 80
|
resubcld |
|- ( ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A =/= 0 \/ B =/= 0 ) ) /\ ( R e. RR+ /\ 0 <_ D ) /\ ( X e. RR /\ Y e. RR ) ) -> ( ( ( R ^ 2 ) x. Q ) - ( C ^ 2 ) ) e. RR ) |
82 |
2 81
|
eqeltrid |
|- ( ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A =/= 0 \/ B =/= 0 ) ) /\ ( R e. RR+ /\ 0 <_ D ) /\ ( X e. RR /\ Y e. RR ) ) -> D e. RR ) |
83 |
82
|
recnd |
|- ( ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A =/= 0 \/ B =/= 0 ) ) /\ ( R e. RR+ /\ 0 <_ D ) /\ ( X e. RR /\ Y e. RR ) ) -> D e. CC ) |
84 |
83
|
sqrtcld |
|- ( ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A =/= 0 \/ B =/= 0 ) ) /\ ( R e. RR+ /\ 0 <_ D ) /\ ( X e. RR /\ Y e. RR ) ) -> ( sqrt ` D ) e. CC ) |
85 |
41 74 84
|
mulassd |
|- ( ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A =/= 0 \/ B =/= 0 ) ) /\ ( R e. RR+ /\ 0 <_ D ) /\ ( X e. RR /\ Y e. RR ) ) -> ( ( 2 x. ( abs ` A ) ) x. ( sqrt ` D ) ) = ( 2 x. ( ( abs ` A ) x. ( sqrt ` D ) ) ) ) |
86 |
85
|
oveq2d |
|- ( ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A =/= 0 \/ B =/= 0 ) ) /\ ( R e. RR+ /\ 0 <_ D ) /\ ( X e. RR /\ Y e. RR ) ) -> ( ( 2 x. ( B x. C ) ) + ( ( 2 x. ( abs ` A ) ) x. ( sqrt ` D ) ) ) = ( ( 2 x. ( B x. C ) ) + ( 2 x. ( ( abs ` A ) x. ( sqrt ` D ) ) ) ) ) |
87 |
51
|
negnegd |
|- ( ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A =/= 0 \/ B =/= 0 ) ) /\ ( R e. RR+ /\ 0 <_ D ) /\ ( X e. RR /\ Y e. RR ) ) -> -u -u ( 2 x. ( B x. C ) ) = ( 2 x. ( B x. C ) ) ) |
88 |
|
simpl |
|- ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A =/= 0 \/ B =/= 0 ) ) -> ( A e. RR /\ B e. RR /\ C e. RR ) ) |
89 |
88
|
3ad2ant1 |
|- ( ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A =/= 0 \/ B =/= 0 ) ) /\ ( R e. RR+ /\ 0 <_ D ) /\ ( X e. RR /\ Y e. RR ) ) -> ( A e. RR /\ B e. RR /\ C e. RR ) ) |
90 |
|
simp2r |
|- ( ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A =/= 0 \/ B =/= 0 ) ) /\ ( R e. RR+ /\ 0 <_ D ) /\ ( X e. RR /\ Y e. RR ) ) -> 0 <_ D ) |
91 |
1 3 4 2
|
itsclc0yqsollem2 |
|- ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ R e. RR /\ 0 <_ D ) -> ( sqrt ` ( ( -u ( 2 x. ( B x. C ) ) ^ 2 ) - ( 4 x. ( Q x. ( ( C ^ 2 ) - ( ( A ^ 2 ) x. ( R ^ 2 ) ) ) ) ) ) ) = ( ( 2 x. ( abs ` A ) ) x. ( sqrt ` D ) ) ) |
92 |
89 76 90 91
|
syl3anc |
|- ( ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A =/= 0 \/ B =/= 0 ) ) /\ ( R e. RR+ /\ 0 <_ D ) /\ ( X e. RR /\ Y e. RR ) ) -> ( sqrt ` ( ( -u ( 2 x. ( B x. C ) ) ^ 2 ) - ( 4 x. ( Q x. ( ( C ^ 2 ) - ( ( A ^ 2 ) x. ( R ^ 2 ) ) ) ) ) ) ) = ( ( 2 x. ( abs ` A ) ) x. ( sqrt ` D ) ) ) |
93 |
87 92
|
oveq12d |
|- ( ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A =/= 0 \/ B =/= 0 ) ) /\ ( R e. RR+ /\ 0 <_ D ) /\ ( X e. RR /\ Y e. RR ) ) -> ( -u -u ( 2 x. ( B x. C ) ) + ( sqrt ` ( ( -u ( 2 x. ( B x. C ) ) ^ 2 ) - ( 4 x. ( Q x. ( ( C ^ 2 ) - ( ( A ^ 2 ) x. ( R ^ 2 ) ) ) ) ) ) ) ) = ( ( 2 x. ( B x. C ) ) + ( ( 2 x. ( abs ` A ) ) x. ( sqrt ` D ) ) ) ) |
94 |
74 84
|
mulcld |
|- ( ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A =/= 0 \/ B =/= 0 ) ) /\ ( R e. RR+ /\ 0 <_ D ) /\ ( X e. RR /\ Y e. RR ) ) -> ( ( abs ` A ) x. ( sqrt ` D ) ) e. CC ) |
95 |
41 50 94
|
adddid |
|- ( ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A =/= 0 \/ B =/= 0 ) ) /\ ( R e. RR+ /\ 0 <_ D ) /\ ( X e. RR /\ Y e. RR ) ) -> ( 2 x. ( ( B x. C ) + ( ( abs ` A ) x. ( sqrt ` D ) ) ) ) = ( ( 2 x. ( B x. C ) ) + ( 2 x. ( ( abs ` A ) x. ( sqrt ` D ) ) ) ) ) |
96 |
86 93 95
|
3eqtr4d |
|- ( ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A =/= 0 \/ B =/= 0 ) ) /\ ( R e. RR+ /\ 0 <_ D ) /\ ( X e. RR /\ Y e. RR ) ) -> ( -u -u ( 2 x. ( B x. C ) ) + ( sqrt ` ( ( -u ( 2 x. ( B x. C ) ) ^ 2 ) - ( 4 x. ( Q x. ( ( C ^ 2 ) - ( ( A ^ 2 ) x. ( R ^ 2 ) ) ) ) ) ) ) ) = ( 2 x. ( ( B x. C ) + ( ( abs ` A ) x. ( sqrt ` D ) ) ) ) ) |
97 |
96
|
oveq1d |
|- ( ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A =/= 0 \/ B =/= 0 ) ) /\ ( R e. RR+ /\ 0 <_ D ) /\ ( X e. RR /\ Y e. RR ) ) -> ( ( -u -u ( 2 x. ( B x. C ) ) + ( sqrt ` ( ( -u ( 2 x. ( B x. C ) ) ^ 2 ) - ( 4 x. ( Q x. ( ( C ^ 2 ) - ( ( A ^ 2 ) x. ( R ^ 2 ) ) ) ) ) ) ) ) / ( 2 x. Q ) ) = ( ( 2 x. ( ( B x. C ) + ( ( abs ` A ) x. ( sqrt ` D ) ) ) ) / ( 2 x. Q ) ) ) |
98 |
50 94
|
addcld |
|- ( ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A =/= 0 \/ B =/= 0 ) ) /\ ( R e. RR+ /\ 0 <_ D ) /\ ( X e. RR /\ Y e. RR ) ) -> ( ( B x. C ) + ( ( abs ` A ) x. ( sqrt ` D ) ) ) e. CC ) |
99 |
|
2ne0 |
|- 2 =/= 0 |
100 |
99
|
a1i |
|- ( ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A =/= 0 \/ B =/= 0 ) ) /\ ( R e. RR+ /\ 0 <_ D ) /\ ( X e. RR /\ Y e. RR ) ) -> 2 =/= 0 ) |
101 |
98 13 41 40 100
|
divcan5d |
|- ( ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A =/= 0 \/ B =/= 0 ) ) /\ ( R e. RR+ /\ 0 <_ D ) /\ ( X e. RR /\ Y e. RR ) ) -> ( ( 2 x. ( ( B x. C ) + ( ( abs ` A ) x. ( sqrt ` D ) ) ) ) / ( 2 x. Q ) ) = ( ( ( B x. C ) + ( ( abs ` A ) x. ( sqrt ` D ) ) ) / Q ) ) |
102 |
97 101
|
eqtrd |
|- ( ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A =/= 0 \/ B =/= 0 ) ) /\ ( R e. RR+ /\ 0 <_ D ) /\ ( X e. RR /\ Y e. RR ) ) -> ( ( -u -u ( 2 x. ( B x. C ) ) + ( sqrt ` ( ( -u ( 2 x. ( B x. C ) ) ^ 2 ) - ( 4 x. ( Q x. ( ( C ^ 2 ) - ( ( A ^ 2 ) x. ( R ^ 2 ) ) ) ) ) ) ) ) / ( 2 x. Q ) ) = ( ( ( B x. C ) + ( ( abs ` A ) x. ( sqrt ` D ) ) ) / Q ) ) |
103 |
102
|
eqeq2d |
|- ( ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A =/= 0 \/ B =/= 0 ) ) /\ ( R e. RR+ /\ 0 <_ D ) /\ ( X e. RR /\ Y e. RR ) ) -> ( Y = ( ( -u -u ( 2 x. ( B x. C ) ) + ( sqrt ` ( ( -u ( 2 x. ( B x. C ) ) ^ 2 ) - ( 4 x. ( Q x. ( ( C ^ 2 ) - ( ( A ^ 2 ) x. ( R ^ 2 ) ) ) ) ) ) ) ) / ( 2 x. Q ) ) <-> Y = ( ( ( B x. C ) + ( ( abs ` A ) x. ( sqrt ` D ) ) ) / Q ) ) ) |
104 |
85
|
oveq2d |
|- ( ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A =/= 0 \/ B =/= 0 ) ) /\ ( R e. RR+ /\ 0 <_ D ) /\ ( X e. RR /\ Y e. RR ) ) -> ( ( 2 x. ( B x. C ) ) - ( ( 2 x. ( abs ` A ) ) x. ( sqrt ` D ) ) ) = ( ( 2 x. ( B x. C ) ) - ( 2 x. ( ( abs ` A ) x. ( sqrt ` D ) ) ) ) ) |
105 |
87 92
|
oveq12d |
|- ( ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A =/= 0 \/ B =/= 0 ) ) /\ ( R e. RR+ /\ 0 <_ D ) /\ ( X e. RR /\ Y e. RR ) ) -> ( -u -u ( 2 x. ( B x. C ) ) - ( sqrt ` ( ( -u ( 2 x. ( B x. C ) ) ^ 2 ) - ( 4 x. ( Q x. ( ( C ^ 2 ) - ( ( A ^ 2 ) x. ( R ^ 2 ) ) ) ) ) ) ) ) = ( ( 2 x. ( B x. C ) ) - ( ( 2 x. ( abs ` A ) ) x. ( sqrt ` D ) ) ) ) |
106 |
41 50 94
|
subdid |
|- ( ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A =/= 0 \/ B =/= 0 ) ) /\ ( R e. RR+ /\ 0 <_ D ) /\ ( X e. RR /\ Y e. RR ) ) -> ( 2 x. ( ( B x. C ) - ( ( abs ` A ) x. ( sqrt ` D ) ) ) ) = ( ( 2 x. ( B x. C ) ) - ( 2 x. ( ( abs ` A ) x. ( sqrt ` D ) ) ) ) ) |
107 |
104 105 106
|
3eqtr4d |
|- ( ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A =/= 0 \/ B =/= 0 ) ) /\ ( R e. RR+ /\ 0 <_ D ) /\ ( X e. RR /\ Y e. RR ) ) -> ( -u -u ( 2 x. ( B x. C ) ) - ( sqrt ` ( ( -u ( 2 x. ( B x. C ) ) ^ 2 ) - ( 4 x. ( Q x. ( ( C ^ 2 ) - ( ( A ^ 2 ) x. ( R ^ 2 ) ) ) ) ) ) ) ) = ( 2 x. ( ( B x. C ) - ( ( abs ` A ) x. ( sqrt ` D ) ) ) ) ) |
108 |
107
|
oveq1d |
|- ( ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A =/= 0 \/ B =/= 0 ) ) /\ ( R e. RR+ /\ 0 <_ D ) /\ ( X e. RR /\ Y e. RR ) ) -> ( ( -u -u ( 2 x. ( B x. C ) ) - ( sqrt ` ( ( -u ( 2 x. ( B x. C ) ) ^ 2 ) - ( 4 x. ( Q x. ( ( C ^ 2 ) - ( ( A ^ 2 ) x. ( R ^ 2 ) ) ) ) ) ) ) ) / ( 2 x. Q ) ) = ( ( 2 x. ( ( B x. C ) - ( ( abs ` A ) x. ( sqrt ` D ) ) ) ) / ( 2 x. Q ) ) ) |
109 |
50 94
|
subcld |
|- ( ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A =/= 0 \/ B =/= 0 ) ) /\ ( R e. RR+ /\ 0 <_ D ) /\ ( X e. RR /\ Y e. RR ) ) -> ( ( B x. C ) - ( ( abs ` A ) x. ( sqrt ` D ) ) ) e. CC ) |
110 |
109 13 41 40 100
|
divcan5d |
|- ( ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A =/= 0 \/ B =/= 0 ) ) /\ ( R e. RR+ /\ 0 <_ D ) /\ ( X e. RR /\ Y e. RR ) ) -> ( ( 2 x. ( ( B x. C ) - ( ( abs ` A ) x. ( sqrt ` D ) ) ) ) / ( 2 x. Q ) ) = ( ( ( B x. C ) - ( ( abs ` A ) x. ( sqrt ` D ) ) ) / Q ) ) |
111 |
108 110
|
eqtrd |
|- ( ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A =/= 0 \/ B =/= 0 ) ) /\ ( R e. RR+ /\ 0 <_ D ) /\ ( X e. RR /\ Y e. RR ) ) -> ( ( -u -u ( 2 x. ( B x. C ) ) - ( sqrt ` ( ( -u ( 2 x. ( B x. C ) ) ^ 2 ) - ( 4 x. ( Q x. ( ( C ^ 2 ) - ( ( A ^ 2 ) x. ( R ^ 2 ) ) ) ) ) ) ) ) / ( 2 x. Q ) ) = ( ( ( B x. C ) - ( ( abs ` A ) x. ( sqrt ` D ) ) ) / Q ) ) |
112 |
111
|
eqeq2d |
|- ( ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A =/= 0 \/ B =/= 0 ) ) /\ ( R e. RR+ /\ 0 <_ D ) /\ ( X e. RR /\ Y e. RR ) ) -> ( Y = ( ( -u -u ( 2 x. ( B x. C ) ) - ( sqrt ` ( ( -u ( 2 x. ( B x. C ) ) ^ 2 ) - ( 4 x. ( Q x. ( ( C ^ 2 ) - ( ( A ^ 2 ) x. ( R ^ 2 ) ) ) ) ) ) ) ) / ( 2 x. Q ) ) <-> Y = ( ( ( B x. C ) - ( ( abs ` A ) x. ( sqrt ` D ) ) ) / Q ) ) ) |
113 |
103 112
|
orbi12d |
|- ( ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A =/= 0 \/ B =/= 0 ) ) /\ ( R e. RR+ /\ 0 <_ D ) /\ ( X e. RR /\ Y e. RR ) ) -> ( ( Y = ( ( -u -u ( 2 x. ( B x. C ) ) + ( sqrt ` ( ( -u ( 2 x. ( B x. C ) ) ^ 2 ) - ( 4 x. ( Q x. ( ( C ^ 2 ) - ( ( A ^ 2 ) x. ( R ^ 2 ) ) ) ) ) ) ) ) / ( 2 x. Q ) ) \/ Y = ( ( -u -u ( 2 x. ( B x. C ) ) - ( sqrt ` ( ( -u ( 2 x. ( B x. C ) ) ^ 2 ) - ( 4 x. ( Q x. ( ( C ^ 2 ) - ( ( A ^ 2 ) x. ( R ^ 2 ) ) ) ) ) ) ) ) / ( 2 x. Q ) ) ) <-> ( Y = ( ( ( B x. C ) + ( ( abs ` A ) x. ( sqrt ` D ) ) ) / Q ) \/ Y = ( ( ( B x. C ) - ( ( abs ` A ) x. ( sqrt ` D ) ) ) / Q ) ) ) ) |
114 |
69 113
|
bitrd |
|- ( ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A =/= 0 \/ B =/= 0 ) ) /\ ( R e. RR+ /\ 0 <_ D ) /\ ( X e. RR /\ Y e. RR ) ) -> ( ( ( Q x. ( Y ^ 2 ) ) + ( ( -u ( 2 x. ( B x. C ) ) x. Y ) + ( ( C ^ 2 ) - ( ( A ^ 2 ) x. ( R ^ 2 ) ) ) ) ) = 0 <-> ( Y = ( ( ( B x. C ) + ( ( abs ` A ) x. ( sqrt ` D ) ) ) / Q ) \/ Y = ( ( ( B x. C ) - ( ( abs ` A ) x. ( sqrt ` D ) ) ) / Q ) ) ) ) |
115 |
|
absid |
|- ( ( A e. RR /\ 0 <_ A ) -> ( abs ` A ) = A ) |
116 |
115
|
ex |
|- ( A e. RR -> ( 0 <_ A -> ( abs ` A ) = A ) ) |
117 |
116
|
3ad2ant1 |
|- ( ( A e. RR /\ B e. RR /\ C e. RR ) -> ( 0 <_ A -> ( abs ` A ) = A ) ) |
118 |
117
|
adantr |
|- ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A =/= 0 \/ B =/= 0 ) ) -> ( 0 <_ A -> ( abs ` A ) = A ) ) |
119 |
118
|
3ad2ant1 |
|- ( ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A =/= 0 \/ B =/= 0 ) ) /\ ( R e. RR+ /\ 0 <_ D ) /\ ( X e. RR /\ Y e. RR ) ) -> ( 0 <_ A -> ( abs ` A ) = A ) ) |
120 |
119
|
impcom |
|- ( ( 0 <_ A /\ ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A =/= 0 \/ B =/= 0 ) ) /\ ( R e. RR+ /\ 0 <_ D ) /\ ( X e. RR /\ Y e. RR ) ) ) -> ( abs ` A ) = A ) |
121 |
120
|
oveq1d |
|- ( ( 0 <_ A /\ ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A =/= 0 \/ B =/= 0 ) ) /\ ( R e. RR+ /\ 0 <_ D ) /\ ( X e. RR /\ Y e. RR ) ) ) -> ( ( abs ` A ) x. ( sqrt ` D ) ) = ( A x. ( sqrt ` D ) ) ) |
122 |
121
|
oveq2d |
|- ( ( 0 <_ A /\ ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A =/= 0 \/ B =/= 0 ) ) /\ ( R e. RR+ /\ 0 <_ D ) /\ ( X e. RR /\ Y e. RR ) ) ) -> ( ( B x. C ) + ( ( abs ` A ) x. ( sqrt ` D ) ) ) = ( ( B x. C ) + ( A x. ( sqrt ` D ) ) ) ) |
123 |
122
|
oveq1d |
|- ( ( 0 <_ A /\ ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A =/= 0 \/ B =/= 0 ) ) /\ ( R e. RR+ /\ 0 <_ D ) /\ ( X e. RR /\ Y e. RR ) ) ) -> ( ( ( B x. C ) + ( ( abs ` A ) x. ( sqrt ` D ) ) ) / Q ) = ( ( ( B x. C ) + ( A x. ( sqrt ` D ) ) ) / Q ) ) |
124 |
123
|
eqeq2d |
|- ( ( 0 <_ A /\ ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A =/= 0 \/ B =/= 0 ) ) /\ ( R e. RR+ /\ 0 <_ D ) /\ ( X e. RR /\ Y e. RR ) ) ) -> ( Y = ( ( ( B x. C ) + ( ( abs ` A ) x. ( sqrt ` D ) ) ) / Q ) <-> Y = ( ( ( B x. C ) + ( A x. ( sqrt ` D ) ) ) / Q ) ) ) |
125 |
121
|
oveq2d |
|- ( ( 0 <_ A /\ ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A =/= 0 \/ B =/= 0 ) ) /\ ( R e. RR+ /\ 0 <_ D ) /\ ( X e. RR /\ Y e. RR ) ) ) -> ( ( B x. C ) - ( ( abs ` A ) x. ( sqrt ` D ) ) ) = ( ( B x. C ) - ( A x. ( sqrt ` D ) ) ) ) |
126 |
125
|
oveq1d |
|- ( ( 0 <_ A /\ ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A =/= 0 \/ B =/= 0 ) ) /\ ( R e. RR+ /\ 0 <_ D ) /\ ( X e. RR /\ Y e. RR ) ) ) -> ( ( ( B x. C ) - ( ( abs ` A ) x. ( sqrt ` D ) ) ) / Q ) = ( ( ( B x. C ) - ( A x. ( sqrt ` D ) ) ) / Q ) ) |
127 |
126
|
eqeq2d |
|- ( ( 0 <_ A /\ ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A =/= 0 \/ B =/= 0 ) ) /\ ( R e. RR+ /\ 0 <_ D ) /\ ( X e. RR /\ Y e. RR ) ) ) -> ( Y = ( ( ( B x. C ) - ( ( abs ` A ) x. ( sqrt ` D ) ) ) / Q ) <-> Y = ( ( ( B x. C ) - ( A x. ( sqrt ` D ) ) ) / Q ) ) ) |
128 |
124 127
|
orbi12d |
|- ( ( 0 <_ A /\ ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A =/= 0 \/ B =/= 0 ) ) /\ ( R e. RR+ /\ 0 <_ D ) /\ ( X e. RR /\ Y e. RR ) ) ) -> ( ( Y = ( ( ( B x. C ) + ( ( abs ` A ) x. ( sqrt ` D ) ) ) / Q ) \/ Y = ( ( ( B x. C ) - ( ( abs ` A ) x. ( sqrt ` D ) ) ) / Q ) ) <-> ( Y = ( ( ( B x. C ) + ( A x. ( sqrt ` D ) ) ) / Q ) \/ Y = ( ( ( B x. C ) - ( A x. ( sqrt ` D ) ) ) / Q ) ) ) ) |
129 |
|
pm1.4 |
|- ( ( Y = ( ( ( B x. C ) + ( A x. ( sqrt ` D ) ) ) / Q ) \/ Y = ( ( ( B x. C ) - ( A x. ( sqrt ` D ) ) ) / Q ) ) -> ( Y = ( ( ( B x. C ) - ( A x. ( sqrt ` D ) ) ) / Q ) \/ Y = ( ( ( B x. C ) + ( A x. ( sqrt ` D ) ) ) / Q ) ) ) |
130 |
128 129
|
syl6bi |
|- ( ( 0 <_ A /\ ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A =/= 0 \/ B =/= 0 ) ) /\ ( R e. RR+ /\ 0 <_ D ) /\ ( X e. RR /\ Y e. RR ) ) ) -> ( ( Y = ( ( ( B x. C ) + ( ( abs ` A ) x. ( sqrt ` D ) ) ) / Q ) \/ Y = ( ( ( B x. C ) - ( ( abs ` A ) x. ( sqrt ` D ) ) ) / Q ) ) -> ( Y = ( ( ( B x. C ) - ( A x. ( sqrt ` D ) ) ) / Q ) \/ Y = ( ( ( B x. C ) + ( A x. ( sqrt ` D ) ) ) / Q ) ) ) ) |
131 |
50
|
adantl |
|- ( ( -. 0 <_ A /\ ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A =/= 0 \/ B =/= 0 ) ) /\ ( R e. RR+ /\ 0 <_ D ) /\ ( X e. RR /\ Y e. RR ) ) ) -> ( B x. C ) e. CC ) |
132 |
94
|
adantl |
|- ( ( -. 0 <_ A /\ ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A =/= 0 \/ B =/= 0 ) ) /\ ( R e. RR+ /\ 0 <_ D ) /\ ( X e. RR /\ Y e. RR ) ) ) -> ( ( abs ` A ) x. ( sqrt ` D ) ) e. CC ) |
133 |
131 132
|
subnegd |
|- ( ( -. 0 <_ A /\ ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A =/= 0 \/ B =/= 0 ) ) /\ ( R e. RR+ /\ 0 <_ D ) /\ ( X e. RR /\ Y e. RR ) ) ) -> ( ( B x. C ) - -u ( ( abs ` A ) x. ( sqrt ` D ) ) ) = ( ( B x. C ) + ( ( abs ` A ) x. ( sqrt ` D ) ) ) ) |
134 |
74
|
adantl |
|- ( ( -. 0 <_ A /\ ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A =/= 0 \/ B =/= 0 ) ) /\ ( R e. RR+ /\ 0 <_ D ) /\ ( X e. RR /\ Y e. RR ) ) ) -> ( abs ` A ) e. CC ) |
135 |
84
|
adantl |
|- ( ( -. 0 <_ A /\ ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A =/= 0 \/ B =/= 0 ) ) /\ ( R e. RR+ /\ 0 <_ D ) /\ ( X e. RR /\ Y e. RR ) ) ) -> ( sqrt ` D ) e. CC ) |
136 |
134 135
|
mulneg1d |
|- ( ( -. 0 <_ A /\ ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A =/= 0 \/ B =/= 0 ) ) /\ ( R e. RR+ /\ 0 <_ D ) /\ ( X e. RR /\ Y e. RR ) ) ) -> ( -u ( abs ` A ) x. ( sqrt ` D ) ) = -u ( ( abs ` A ) x. ( sqrt ` D ) ) ) |
137 |
89
|
simp1d |
|- ( ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A =/= 0 \/ B =/= 0 ) ) /\ ( R e. RR+ /\ 0 <_ D ) /\ ( X e. RR /\ Y e. RR ) ) -> A e. RR ) |
138 |
137
|
adantl |
|- ( ( -. 0 <_ A /\ ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A =/= 0 \/ B =/= 0 ) ) /\ ( R e. RR+ /\ 0 <_ D ) /\ ( X e. RR /\ Y e. RR ) ) ) -> A e. RR ) |
139 |
|
id |
|- ( A e. RR -> A e. RR ) |
140 |
|
0red |
|- ( A e. RR -> 0 e. RR ) |
141 |
139 140
|
ltnled |
|- ( A e. RR -> ( A < 0 <-> -. 0 <_ A ) ) |
142 |
|
ltle |
|- ( ( A e. RR /\ 0 e. RR ) -> ( A < 0 -> A <_ 0 ) ) |
143 |
140 142
|
mpdan |
|- ( A e. RR -> ( A < 0 -> A <_ 0 ) ) |
144 |
141 143
|
sylbird |
|- ( A e. RR -> ( -. 0 <_ A -> A <_ 0 ) ) |
145 |
144
|
3ad2ant1 |
|- ( ( A e. RR /\ B e. RR /\ C e. RR ) -> ( -. 0 <_ A -> A <_ 0 ) ) |
146 |
145
|
adantr |
|- ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A =/= 0 \/ B =/= 0 ) ) -> ( -. 0 <_ A -> A <_ 0 ) ) |
147 |
146
|
3ad2ant1 |
|- ( ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A =/= 0 \/ B =/= 0 ) ) /\ ( R e. RR+ /\ 0 <_ D ) /\ ( X e. RR /\ Y e. RR ) ) -> ( -. 0 <_ A -> A <_ 0 ) ) |
148 |
147
|
impcom |
|- ( ( -. 0 <_ A /\ ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A =/= 0 \/ B =/= 0 ) ) /\ ( R e. RR+ /\ 0 <_ D ) /\ ( X e. RR /\ Y e. RR ) ) ) -> A <_ 0 ) |
149 |
138 148
|
absnidd |
|- ( ( -. 0 <_ A /\ ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A =/= 0 \/ B =/= 0 ) ) /\ ( R e. RR+ /\ 0 <_ D ) /\ ( X e. RR /\ Y e. RR ) ) ) -> ( abs ` A ) = -u A ) |
150 |
149
|
negeqd |
|- ( ( -. 0 <_ A /\ ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A =/= 0 \/ B =/= 0 ) ) /\ ( R e. RR+ /\ 0 <_ D ) /\ ( X e. RR /\ Y e. RR ) ) ) -> -u ( abs ` A ) = -u -u A ) |
151 |
57
|
adantl |
|- ( ( -. 0 <_ A /\ ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A =/= 0 \/ B =/= 0 ) ) /\ ( R e. RR+ /\ 0 <_ D ) /\ ( X e. RR /\ Y e. RR ) ) ) -> A e. CC ) |
152 |
151
|
negnegd |
|- ( ( -. 0 <_ A /\ ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A =/= 0 \/ B =/= 0 ) ) /\ ( R e. RR+ /\ 0 <_ D ) /\ ( X e. RR /\ Y e. RR ) ) ) -> -u -u A = A ) |
153 |
150 152
|
eqtrd |
|- ( ( -. 0 <_ A /\ ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A =/= 0 \/ B =/= 0 ) ) /\ ( R e. RR+ /\ 0 <_ D ) /\ ( X e. RR /\ Y e. RR ) ) ) -> -u ( abs ` A ) = A ) |
154 |
153
|
oveq1d |
|- ( ( -. 0 <_ A /\ ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A =/= 0 \/ B =/= 0 ) ) /\ ( R e. RR+ /\ 0 <_ D ) /\ ( X e. RR /\ Y e. RR ) ) ) -> ( -u ( abs ` A ) x. ( sqrt ` D ) ) = ( A x. ( sqrt ` D ) ) ) |
155 |
136 154
|
eqtr3d |
|- ( ( -. 0 <_ A /\ ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A =/= 0 \/ B =/= 0 ) ) /\ ( R e. RR+ /\ 0 <_ D ) /\ ( X e. RR /\ Y e. RR ) ) ) -> -u ( ( abs ` A ) x. ( sqrt ` D ) ) = ( A x. ( sqrt ` D ) ) ) |
156 |
155
|
oveq2d |
|- ( ( -. 0 <_ A /\ ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A =/= 0 \/ B =/= 0 ) ) /\ ( R e. RR+ /\ 0 <_ D ) /\ ( X e. RR /\ Y e. RR ) ) ) -> ( ( B x. C ) - -u ( ( abs ` A ) x. ( sqrt ` D ) ) ) = ( ( B x. C ) - ( A x. ( sqrt ` D ) ) ) ) |
157 |
133 156
|
eqtr3d |
|- ( ( -. 0 <_ A /\ ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A =/= 0 \/ B =/= 0 ) ) /\ ( R e. RR+ /\ 0 <_ D ) /\ ( X e. RR /\ Y e. RR ) ) ) -> ( ( B x. C ) + ( ( abs ` A ) x. ( sqrt ` D ) ) ) = ( ( B x. C ) - ( A x. ( sqrt ` D ) ) ) ) |
158 |
157
|
oveq1d |
|- ( ( -. 0 <_ A /\ ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A =/= 0 \/ B =/= 0 ) ) /\ ( R e. RR+ /\ 0 <_ D ) /\ ( X e. RR /\ Y e. RR ) ) ) -> ( ( ( B x. C ) + ( ( abs ` A ) x. ( sqrt ` D ) ) ) / Q ) = ( ( ( B x. C ) - ( A x. ( sqrt ` D ) ) ) / Q ) ) |
159 |
158
|
eqeq2d |
|- ( ( -. 0 <_ A /\ ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A =/= 0 \/ B =/= 0 ) ) /\ ( R e. RR+ /\ 0 <_ D ) /\ ( X e. RR /\ Y e. RR ) ) ) -> ( Y = ( ( ( B x. C ) + ( ( abs ` A ) x. ( sqrt ` D ) ) ) / Q ) <-> Y = ( ( ( B x. C ) - ( A x. ( sqrt ` D ) ) ) / Q ) ) ) |
160 |
131 132
|
negsubd |
|- ( ( -. 0 <_ A /\ ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A =/= 0 \/ B =/= 0 ) ) /\ ( R e. RR+ /\ 0 <_ D ) /\ ( X e. RR /\ Y e. RR ) ) ) -> ( ( B x. C ) + -u ( ( abs ` A ) x. ( sqrt ` D ) ) ) = ( ( B x. C ) - ( ( abs ` A ) x. ( sqrt ` D ) ) ) ) |
161 |
155
|
oveq2d |
|- ( ( -. 0 <_ A /\ ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A =/= 0 \/ B =/= 0 ) ) /\ ( R e. RR+ /\ 0 <_ D ) /\ ( X e. RR /\ Y e. RR ) ) ) -> ( ( B x. C ) + -u ( ( abs ` A ) x. ( sqrt ` D ) ) ) = ( ( B x. C ) + ( A x. ( sqrt ` D ) ) ) ) |
162 |
160 161
|
eqtr3d |
|- ( ( -. 0 <_ A /\ ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A =/= 0 \/ B =/= 0 ) ) /\ ( R e. RR+ /\ 0 <_ D ) /\ ( X e. RR /\ Y e. RR ) ) ) -> ( ( B x. C ) - ( ( abs ` A ) x. ( sqrt ` D ) ) ) = ( ( B x. C ) + ( A x. ( sqrt ` D ) ) ) ) |
163 |
162
|
oveq1d |
|- ( ( -. 0 <_ A /\ ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A =/= 0 \/ B =/= 0 ) ) /\ ( R e. RR+ /\ 0 <_ D ) /\ ( X e. RR /\ Y e. RR ) ) ) -> ( ( ( B x. C ) - ( ( abs ` A ) x. ( sqrt ` D ) ) ) / Q ) = ( ( ( B x. C ) + ( A x. ( sqrt ` D ) ) ) / Q ) ) |
164 |
163
|
eqeq2d |
|- ( ( -. 0 <_ A /\ ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A =/= 0 \/ B =/= 0 ) ) /\ ( R e. RR+ /\ 0 <_ D ) /\ ( X e. RR /\ Y e. RR ) ) ) -> ( Y = ( ( ( B x. C ) - ( ( abs ` A ) x. ( sqrt ` D ) ) ) / Q ) <-> Y = ( ( ( B x. C ) + ( A x. ( sqrt ` D ) ) ) / Q ) ) ) |
165 |
159 164
|
orbi12d |
|- ( ( -. 0 <_ A /\ ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A =/= 0 \/ B =/= 0 ) ) /\ ( R e. RR+ /\ 0 <_ D ) /\ ( X e. RR /\ Y e. RR ) ) ) -> ( ( Y = ( ( ( B x. C ) + ( ( abs ` A ) x. ( sqrt ` D ) ) ) / Q ) \/ Y = ( ( ( B x. C ) - ( ( abs ` A ) x. ( sqrt ` D ) ) ) / Q ) ) <-> ( Y = ( ( ( B x. C ) - ( A x. ( sqrt ` D ) ) ) / Q ) \/ Y = ( ( ( B x. C ) + ( A x. ( sqrt ` D ) ) ) / Q ) ) ) ) |
166 |
165
|
biimpd |
|- ( ( -. 0 <_ A /\ ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A =/= 0 \/ B =/= 0 ) ) /\ ( R e. RR+ /\ 0 <_ D ) /\ ( X e. RR /\ Y e. RR ) ) ) -> ( ( Y = ( ( ( B x. C ) + ( ( abs ` A ) x. ( sqrt ` D ) ) ) / Q ) \/ Y = ( ( ( B x. C ) - ( ( abs ` A ) x. ( sqrt ` D ) ) ) / Q ) ) -> ( Y = ( ( ( B x. C ) - ( A x. ( sqrt ` D ) ) ) / Q ) \/ Y = ( ( ( B x. C ) + ( A x. ( sqrt ` D ) ) ) / Q ) ) ) ) |
167 |
130 166
|
pm2.61ian |
|- ( ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A =/= 0 \/ B =/= 0 ) ) /\ ( R e. RR+ /\ 0 <_ D ) /\ ( X e. RR /\ Y e. RR ) ) -> ( ( Y = ( ( ( B x. C ) + ( ( abs ` A ) x. ( sqrt ` D ) ) ) / Q ) \/ Y = ( ( ( B x. C ) - ( ( abs ` A ) x. ( sqrt ` D ) ) ) / Q ) ) -> ( Y = ( ( ( B x. C ) - ( A x. ( sqrt ` D ) ) ) / Q ) \/ Y = ( ( ( B x. C ) + ( A x. ( sqrt ` D ) ) ) / Q ) ) ) ) |
168 |
114 167
|
sylbid |
|- ( ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A =/= 0 \/ B =/= 0 ) ) /\ ( R e. RR+ /\ 0 <_ D ) /\ ( X e. RR /\ Y e. RR ) ) -> ( ( ( Q x. ( Y ^ 2 ) ) + ( ( -u ( 2 x. ( B x. C ) ) x. Y ) + ( ( C ^ 2 ) - ( ( A ^ 2 ) x. ( R ^ 2 ) ) ) ) ) = 0 -> ( Y = ( ( ( B x. C ) - ( A x. ( sqrt ` D ) ) ) / Q ) \/ Y = ( ( ( B x. C ) + ( A x. ( sqrt ` D ) ) ) / Q ) ) ) ) |
169 |
7 168
|
syld |
|- ( ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( A =/= 0 \/ B =/= 0 ) ) /\ ( R e. RR+ /\ 0 <_ D ) /\ ( X e. RR /\ Y e. RR ) ) -> ( ( ( ( X ^ 2 ) + ( Y ^ 2 ) ) = ( R ^ 2 ) /\ ( ( A x. X ) + ( B x. Y ) ) = C ) -> ( Y = ( ( ( B x. C ) - ( A x. ( sqrt ` D ) ) ) / Q ) \/ Y = ( ( ( B x. C ) + ( A x. ( sqrt ` D ) ) ) / Q ) ) ) ) |