Step |
Hyp |
Ref |
Expression |
1 |
|
itscnhlc0yqe.q |
|- Q = ( ( A ^ 2 ) + ( B ^ 2 ) ) |
2 |
|
itscnhlc0yqe.t |
|- T = -u ( 2 x. ( B x. C ) ) |
3 |
|
itscnhlc0yqe.u |
|- U = ( ( C ^ 2 ) - ( ( A ^ 2 ) x. ( R ^ 2 ) ) ) |
4 |
|
itsclc0yqsollem1.d |
|- D = ( ( ( R ^ 2 ) x. Q ) - ( C ^ 2 ) ) |
5 |
|
recn |
|- ( A e. RR -> A e. CC ) |
6 |
|
recn |
|- ( B e. RR -> B e. CC ) |
7 |
|
recn |
|- ( C e. RR -> C e. CC ) |
8 |
5 6 7
|
3anim123i |
|- ( ( A e. RR /\ B e. RR /\ C e. RR ) -> ( A e. CC /\ B e. CC /\ C e. CC ) ) |
9 |
|
recn |
|- ( R e. RR -> R e. CC ) |
10 |
8 9
|
anim12i |
|- ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ R e. RR ) -> ( ( A e. CC /\ B e. CC /\ C e. CC ) /\ R e. CC ) ) |
11 |
10
|
3adant3 |
|- ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ R e. RR /\ 0 <_ D ) -> ( ( A e. CC /\ B e. CC /\ C e. CC ) /\ R e. CC ) ) |
12 |
1 2 3 4
|
itsclc0yqsollem1 |
|- ( ( ( A e. CC /\ B e. CC /\ C e. CC ) /\ R e. CC ) -> ( ( T ^ 2 ) - ( 4 x. ( Q x. U ) ) ) = ( ( 4 x. ( A ^ 2 ) ) x. D ) ) |
13 |
11 12
|
syl |
|- ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ R e. RR /\ 0 <_ D ) -> ( ( T ^ 2 ) - ( 4 x. ( Q x. U ) ) ) = ( ( 4 x. ( A ^ 2 ) ) x. D ) ) |
14 |
13
|
fveq2d |
|- ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ R e. RR /\ 0 <_ D ) -> ( sqrt ` ( ( T ^ 2 ) - ( 4 x. ( Q x. U ) ) ) ) = ( sqrt ` ( ( 4 x. ( A ^ 2 ) ) x. D ) ) ) |
15 |
|
4re |
|- 4 e. RR |
16 |
15
|
a1i |
|- ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ R e. RR /\ 0 <_ D ) -> 4 e. RR ) |
17 |
|
simp1 |
|- ( ( A e. RR /\ B e. RR /\ C e. RR ) -> A e. RR ) |
18 |
17
|
resqcld |
|- ( ( A e. RR /\ B e. RR /\ C e. RR ) -> ( A ^ 2 ) e. RR ) |
19 |
18
|
3ad2ant1 |
|- ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ R e. RR /\ 0 <_ D ) -> ( A ^ 2 ) e. RR ) |
20 |
16 19
|
remulcld |
|- ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ R e. RR /\ 0 <_ D ) -> ( 4 x. ( A ^ 2 ) ) e. RR ) |
21 |
|
0re |
|- 0 e. RR |
22 |
|
4pos |
|- 0 < 4 |
23 |
21 15 22
|
ltleii |
|- 0 <_ 4 |
24 |
23
|
a1i |
|- ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ R e. RR /\ 0 <_ D ) -> 0 <_ 4 ) |
25 |
17
|
sqge0d |
|- ( ( A e. RR /\ B e. RR /\ C e. RR ) -> 0 <_ ( A ^ 2 ) ) |
26 |
25
|
3ad2ant1 |
|- ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ R e. RR /\ 0 <_ D ) -> 0 <_ ( A ^ 2 ) ) |
27 |
16 19 24 26
|
mulge0d |
|- ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ R e. RR /\ 0 <_ D ) -> 0 <_ ( 4 x. ( A ^ 2 ) ) ) |
28 |
|
simp2 |
|- ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ R e. RR /\ 0 <_ D ) -> R e. RR ) |
29 |
28
|
resqcld |
|- ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ R e. RR /\ 0 <_ D ) -> ( R ^ 2 ) e. RR ) |
30 |
1
|
resum2sqcl |
|- ( ( A e. RR /\ B e. RR ) -> Q e. RR ) |
31 |
30
|
3adant3 |
|- ( ( A e. RR /\ B e. RR /\ C e. RR ) -> Q e. RR ) |
32 |
31
|
3ad2ant1 |
|- ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ R e. RR /\ 0 <_ D ) -> Q e. RR ) |
33 |
29 32
|
remulcld |
|- ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ R e. RR /\ 0 <_ D ) -> ( ( R ^ 2 ) x. Q ) e. RR ) |
34 |
|
simp3 |
|- ( ( A e. RR /\ B e. RR /\ C e. RR ) -> C e. RR ) |
35 |
34
|
resqcld |
|- ( ( A e. RR /\ B e. RR /\ C e. RR ) -> ( C ^ 2 ) e. RR ) |
36 |
35
|
3ad2ant1 |
|- ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ R e. RR /\ 0 <_ D ) -> ( C ^ 2 ) e. RR ) |
37 |
33 36
|
resubcld |
|- ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ R e. RR /\ 0 <_ D ) -> ( ( ( R ^ 2 ) x. Q ) - ( C ^ 2 ) ) e. RR ) |
38 |
4 37
|
eqeltrid |
|- ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ R e. RR /\ 0 <_ D ) -> D e. RR ) |
39 |
|
simp3 |
|- ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ R e. RR /\ 0 <_ D ) -> 0 <_ D ) |
40 |
20 27 38 39
|
sqrtmuld |
|- ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ R e. RR /\ 0 <_ D ) -> ( sqrt ` ( ( 4 x. ( A ^ 2 ) ) x. D ) ) = ( ( sqrt ` ( 4 x. ( A ^ 2 ) ) ) x. ( sqrt ` D ) ) ) |
41 |
15 23
|
pm3.2i |
|- ( 4 e. RR /\ 0 <_ 4 ) |
42 |
41
|
a1i |
|- ( A e. RR -> ( 4 e. RR /\ 0 <_ 4 ) ) |
43 |
|
resqcl |
|- ( A e. RR -> ( A ^ 2 ) e. RR ) |
44 |
|
sqge0 |
|- ( A e. RR -> 0 <_ ( A ^ 2 ) ) |
45 |
|
sqrtmul |
|- ( ( ( 4 e. RR /\ 0 <_ 4 ) /\ ( ( A ^ 2 ) e. RR /\ 0 <_ ( A ^ 2 ) ) ) -> ( sqrt ` ( 4 x. ( A ^ 2 ) ) ) = ( ( sqrt ` 4 ) x. ( sqrt ` ( A ^ 2 ) ) ) ) |
46 |
42 43 44 45
|
syl12anc |
|- ( A e. RR -> ( sqrt ` ( 4 x. ( A ^ 2 ) ) ) = ( ( sqrt ` 4 ) x. ( sqrt ` ( A ^ 2 ) ) ) ) |
47 |
46
|
3ad2ant1 |
|- ( ( A e. RR /\ B e. RR /\ C e. RR ) -> ( sqrt ` ( 4 x. ( A ^ 2 ) ) ) = ( ( sqrt ` 4 ) x. ( sqrt ` ( A ^ 2 ) ) ) ) |
48 |
47
|
3ad2ant1 |
|- ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ R e. RR /\ 0 <_ D ) -> ( sqrt ` ( 4 x. ( A ^ 2 ) ) ) = ( ( sqrt ` 4 ) x. ( sqrt ` ( A ^ 2 ) ) ) ) |
49 |
|
sqrt4 |
|- ( sqrt ` 4 ) = 2 |
50 |
49
|
a1i |
|- ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ R e. RR /\ 0 <_ D ) -> ( sqrt ` 4 ) = 2 ) |
51 |
|
absre |
|- ( A e. RR -> ( abs ` A ) = ( sqrt ` ( A ^ 2 ) ) ) |
52 |
51
|
eqcomd |
|- ( A e. RR -> ( sqrt ` ( A ^ 2 ) ) = ( abs ` A ) ) |
53 |
52
|
3ad2ant1 |
|- ( ( A e. RR /\ B e. RR /\ C e. RR ) -> ( sqrt ` ( A ^ 2 ) ) = ( abs ` A ) ) |
54 |
53
|
3ad2ant1 |
|- ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ R e. RR /\ 0 <_ D ) -> ( sqrt ` ( A ^ 2 ) ) = ( abs ` A ) ) |
55 |
50 54
|
oveq12d |
|- ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ R e. RR /\ 0 <_ D ) -> ( ( sqrt ` 4 ) x. ( sqrt ` ( A ^ 2 ) ) ) = ( 2 x. ( abs ` A ) ) ) |
56 |
48 55
|
eqtrd |
|- ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ R e. RR /\ 0 <_ D ) -> ( sqrt ` ( 4 x. ( A ^ 2 ) ) ) = ( 2 x. ( abs ` A ) ) ) |
57 |
56
|
oveq1d |
|- ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ R e. RR /\ 0 <_ D ) -> ( ( sqrt ` ( 4 x. ( A ^ 2 ) ) ) x. ( sqrt ` D ) ) = ( ( 2 x. ( abs ` A ) ) x. ( sqrt ` D ) ) ) |
58 |
14 40 57
|
3eqtrd |
|- ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ R e. RR /\ 0 <_ D ) -> ( sqrt ` ( ( T ^ 2 ) - ( 4 x. ( Q x. U ) ) ) ) = ( ( 2 x. ( abs ` A ) ) x. ( sqrt ` D ) ) ) |