| Step | Hyp | Ref | Expression | 
						
							| 1 |  | itscnhlc0yqe.q |  |-  Q = ( ( A ^ 2 ) + ( B ^ 2 ) ) | 
						
							| 2 |  | itscnhlc0yqe.t |  |-  T = -u ( 2 x. ( B x. C ) ) | 
						
							| 3 |  | itscnhlc0yqe.u |  |-  U = ( ( C ^ 2 ) - ( ( A ^ 2 ) x. ( R ^ 2 ) ) ) | 
						
							| 4 |  | itsclc0yqsollem1.d |  |-  D = ( ( ( R ^ 2 ) x. Q ) - ( C ^ 2 ) ) | 
						
							| 5 |  | recn |  |-  ( A e. RR -> A e. CC ) | 
						
							| 6 |  | recn |  |-  ( B e. RR -> B e. CC ) | 
						
							| 7 |  | recn |  |-  ( C e. RR -> C e. CC ) | 
						
							| 8 | 5 6 7 | 3anim123i |  |-  ( ( A e. RR /\ B e. RR /\ C e. RR ) -> ( A e. CC /\ B e. CC /\ C e. CC ) ) | 
						
							| 9 |  | recn |  |-  ( R e. RR -> R e. CC ) | 
						
							| 10 | 8 9 | anim12i |  |-  ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ R e. RR ) -> ( ( A e. CC /\ B e. CC /\ C e. CC ) /\ R e. CC ) ) | 
						
							| 11 | 10 | 3adant3 |  |-  ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ R e. RR /\ 0 <_ D ) -> ( ( A e. CC /\ B e. CC /\ C e. CC ) /\ R e. CC ) ) | 
						
							| 12 | 1 2 3 4 | itsclc0yqsollem1 |  |-  ( ( ( A e. CC /\ B e. CC /\ C e. CC ) /\ R e. CC ) -> ( ( T ^ 2 ) - ( 4 x. ( Q x. U ) ) ) = ( ( 4 x. ( A ^ 2 ) ) x. D ) ) | 
						
							| 13 | 11 12 | syl |  |-  ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ R e. RR /\ 0 <_ D ) -> ( ( T ^ 2 ) - ( 4 x. ( Q x. U ) ) ) = ( ( 4 x. ( A ^ 2 ) ) x. D ) ) | 
						
							| 14 | 13 | fveq2d |  |-  ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ R e. RR /\ 0 <_ D ) -> ( sqrt ` ( ( T ^ 2 ) - ( 4 x. ( Q x. U ) ) ) ) = ( sqrt ` ( ( 4 x. ( A ^ 2 ) ) x. D ) ) ) | 
						
							| 15 |  | 4re |  |-  4 e. RR | 
						
							| 16 | 15 | a1i |  |-  ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ R e. RR /\ 0 <_ D ) -> 4 e. RR ) | 
						
							| 17 |  | simp1 |  |-  ( ( A e. RR /\ B e. RR /\ C e. RR ) -> A e. RR ) | 
						
							| 18 | 17 | resqcld |  |-  ( ( A e. RR /\ B e. RR /\ C e. RR ) -> ( A ^ 2 ) e. RR ) | 
						
							| 19 | 18 | 3ad2ant1 |  |-  ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ R e. RR /\ 0 <_ D ) -> ( A ^ 2 ) e. RR ) | 
						
							| 20 | 16 19 | remulcld |  |-  ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ R e. RR /\ 0 <_ D ) -> ( 4 x. ( A ^ 2 ) ) e. RR ) | 
						
							| 21 |  | 0re |  |-  0 e. RR | 
						
							| 22 |  | 4pos |  |-  0 < 4 | 
						
							| 23 | 21 15 22 | ltleii |  |-  0 <_ 4 | 
						
							| 24 | 23 | a1i |  |-  ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ R e. RR /\ 0 <_ D ) -> 0 <_ 4 ) | 
						
							| 25 | 17 | sqge0d |  |-  ( ( A e. RR /\ B e. RR /\ C e. RR ) -> 0 <_ ( A ^ 2 ) ) | 
						
							| 26 | 25 | 3ad2ant1 |  |-  ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ R e. RR /\ 0 <_ D ) -> 0 <_ ( A ^ 2 ) ) | 
						
							| 27 | 16 19 24 26 | mulge0d |  |-  ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ R e. RR /\ 0 <_ D ) -> 0 <_ ( 4 x. ( A ^ 2 ) ) ) | 
						
							| 28 |  | simp2 |  |-  ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ R e. RR /\ 0 <_ D ) -> R e. RR ) | 
						
							| 29 | 28 | resqcld |  |-  ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ R e. RR /\ 0 <_ D ) -> ( R ^ 2 ) e. RR ) | 
						
							| 30 | 1 | resum2sqcl |  |-  ( ( A e. RR /\ B e. RR ) -> Q e. RR ) | 
						
							| 31 | 30 | 3adant3 |  |-  ( ( A e. RR /\ B e. RR /\ C e. RR ) -> Q e. RR ) | 
						
							| 32 | 31 | 3ad2ant1 |  |-  ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ R e. RR /\ 0 <_ D ) -> Q e. RR ) | 
						
							| 33 | 29 32 | remulcld |  |-  ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ R e. RR /\ 0 <_ D ) -> ( ( R ^ 2 ) x. Q ) e. RR ) | 
						
							| 34 |  | simp3 |  |-  ( ( A e. RR /\ B e. RR /\ C e. RR ) -> C e. RR ) | 
						
							| 35 | 34 | resqcld |  |-  ( ( A e. RR /\ B e. RR /\ C e. RR ) -> ( C ^ 2 ) e. RR ) | 
						
							| 36 | 35 | 3ad2ant1 |  |-  ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ R e. RR /\ 0 <_ D ) -> ( C ^ 2 ) e. RR ) | 
						
							| 37 | 33 36 | resubcld |  |-  ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ R e. RR /\ 0 <_ D ) -> ( ( ( R ^ 2 ) x. Q ) - ( C ^ 2 ) ) e. RR ) | 
						
							| 38 | 4 37 | eqeltrid |  |-  ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ R e. RR /\ 0 <_ D ) -> D e. RR ) | 
						
							| 39 |  | simp3 |  |-  ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ R e. RR /\ 0 <_ D ) -> 0 <_ D ) | 
						
							| 40 | 20 27 38 39 | sqrtmuld |  |-  ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ R e. RR /\ 0 <_ D ) -> ( sqrt ` ( ( 4 x. ( A ^ 2 ) ) x. D ) ) = ( ( sqrt ` ( 4 x. ( A ^ 2 ) ) ) x. ( sqrt ` D ) ) ) | 
						
							| 41 | 15 23 | pm3.2i |  |-  ( 4 e. RR /\ 0 <_ 4 ) | 
						
							| 42 | 41 | a1i |  |-  ( A e. RR -> ( 4 e. RR /\ 0 <_ 4 ) ) | 
						
							| 43 |  | resqcl |  |-  ( A e. RR -> ( A ^ 2 ) e. RR ) | 
						
							| 44 |  | sqge0 |  |-  ( A e. RR -> 0 <_ ( A ^ 2 ) ) | 
						
							| 45 |  | sqrtmul |  |-  ( ( ( 4 e. RR /\ 0 <_ 4 ) /\ ( ( A ^ 2 ) e. RR /\ 0 <_ ( A ^ 2 ) ) ) -> ( sqrt ` ( 4 x. ( A ^ 2 ) ) ) = ( ( sqrt ` 4 ) x. ( sqrt ` ( A ^ 2 ) ) ) ) | 
						
							| 46 | 42 43 44 45 | syl12anc |  |-  ( A e. RR -> ( sqrt ` ( 4 x. ( A ^ 2 ) ) ) = ( ( sqrt ` 4 ) x. ( sqrt ` ( A ^ 2 ) ) ) ) | 
						
							| 47 | 46 | 3ad2ant1 |  |-  ( ( A e. RR /\ B e. RR /\ C e. RR ) -> ( sqrt ` ( 4 x. ( A ^ 2 ) ) ) = ( ( sqrt ` 4 ) x. ( sqrt ` ( A ^ 2 ) ) ) ) | 
						
							| 48 | 47 | 3ad2ant1 |  |-  ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ R e. RR /\ 0 <_ D ) -> ( sqrt ` ( 4 x. ( A ^ 2 ) ) ) = ( ( sqrt ` 4 ) x. ( sqrt ` ( A ^ 2 ) ) ) ) | 
						
							| 49 |  | sqrt4 |  |-  ( sqrt ` 4 ) = 2 | 
						
							| 50 | 49 | a1i |  |-  ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ R e. RR /\ 0 <_ D ) -> ( sqrt ` 4 ) = 2 ) | 
						
							| 51 |  | absre |  |-  ( A e. RR -> ( abs ` A ) = ( sqrt ` ( A ^ 2 ) ) ) | 
						
							| 52 | 51 | eqcomd |  |-  ( A e. RR -> ( sqrt ` ( A ^ 2 ) ) = ( abs ` A ) ) | 
						
							| 53 | 52 | 3ad2ant1 |  |-  ( ( A e. RR /\ B e. RR /\ C e. RR ) -> ( sqrt ` ( A ^ 2 ) ) = ( abs ` A ) ) | 
						
							| 54 | 53 | 3ad2ant1 |  |-  ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ R e. RR /\ 0 <_ D ) -> ( sqrt ` ( A ^ 2 ) ) = ( abs ` A ) ) | 
						
							| 55 | 50 54 | oveq12d |  |-  ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ R e. RR /\ 0 <_ D ) -> ( ( sqrt ` 4 ) x. ( sqrt ` ( A ^ 2 ) ) ) = ( 2 x. ( abs ` A ) ) ) | 
						
							| 56 | 48 55 | eqtrd |  |-  ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ R e. RR /\ 0 <_ D ) -> ( sqrt ` ( 4 x. ( A ^ 2 ) ) ) = ( 2 x. ( abs ` A ) ) ) | 
						
							| 57 | 56 | oveq1d |  |-  ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ R e. RR /\ 0 <_ D ) -> ( ( sqrt ` ( 4 x. ( A ^ 2 ) ) ) x. ( sqrt ` D ) ) = ( ( 2 x. ( abs ` A ) ) x. ( sqrt ` D ) ) ) | 
						
							| 58 | 14 40 57 | 3eqtrd |  |-  ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ R e. RR /\ 0 <_ D ) -> ( sqrt ` ( ( T ^ 2 ) - ( 4 x. ( Q x. U ) ) ) ) = ( ( 2 x. ( abs ` A ) ) x. ( sqrt ` D ) ) ) |