Metamath Proof Explorer


Theorem itsclc0yqsollem2

Description: Lemma 2 for itsclc0yqsol . (Contributed by AV, 6-Feb-2023)

Ref Expression
Hypotheses itscnhlc0yqe.q Q = A 2 + B 2
itscnhlc0yqe.t T = 2 B C
itscnhlc0yqe.u U = C 2 A 2 R 2
itsclc0yqsollem1.d D = R 2 Q C 2
Assertion itsclc0yqsollem2 A B C R 0 D T 2 4 Q U = 2 A D

Proof

Step Hyp Ref Expression
1 itscnhlc0yqe.q Q = A 2 + B 2
2 itscnhlc0yqe.t T = 2 B C
3 itscnhlc0yqe.u U = C 2 A 2 R 2
4 itsclc0yqsollem1.d D = R 2 Q C 2
5 recn A A
6 recn B B
7 recn C C
8 5 6 7 3anim123i A B C A B C
9 recn R R
10 8 9 anim12i A B C R A B C R
11 10 3adant3 A B C R 0 D A B C R
12 1 2 3 4 itsclc0yqsollem1 A B C R T 2 4 Q U = 4 A 2 D
13 11 12 syl A B C R 0 D T 2 4 Q U = 4 A 2 D
14 13 fveq2d A B C R 0 D T 2 4 Q U = 4 A 2 D
15 4re 4
16 15 a1i A B C R 0 D 4
17 simp1 A B C A
18 17 resqcld A B C A 2
19 18 3ad2ant1 A B C R 0 D A 2
20 16 19 remulcld A B C R 0 D 4 A 2
21 0re 0
22 4pos 0 < 4
23 21 15 22 ltleii 0 4
24 23 a1i A B C R 0 D 0 4
25 17 sqge0d A B C 0 A 2
26 25 3ad2ant1 A B C R 0 D 0 A 2
27 16 19 24 26 mulge0d A B C R 0 D 0 4 A 2
28 simp2 A B C R 0 D R
29 28 resqcld A B C R 0 D R 2
30 1 resum2sqcl A B Q
31 30 3adant3 A B C Q
32 31 3ad2ant1 A B C R 0 D Q
33 29 32 remulcld A B C R 0 D R 2 Q
34 simp3 A B C C
35 34 resqcld A B C C 2
36 35 3ad2ant1 A B C R 0 D C 2
37 33 36 resubcld A B C R 0 D R 2 Q C 2
38 4 37 eqeltrid A B C R 0 D D
39 simp3 A B C R 0 D 0 D
40 20 27 38 39 sqrtmuld A B C R 0 D 4 A 2 D = 4 A 2 D
41 15 23 pm3.2i 4 0 4
42 41 a1i A 4 0 4
43 resqcl A A 2
44 sqge0 A 0 A 2
45 sqrtmul 4 0 4 A 2 0 A 2 4 A 2 = 4 A 2
46 42 43 44 45 syl12anc A 4 A 2 = 4 A 2
47 46 3ad2ant1 A B C 4 A 2 = 4 A 2
48 47 3ad2ant1 A B C R 0 D 4 A 2 = 4 A 2
49 sqrt4 4 = 2
50 49 a1i A B C R 0 D 4 = 2
51 absre A A = A 2
52 51 eqcomd A A 2 = A
53 52 3ad2ant1 A B C A 2 = A
54 53 3ad2ant1 A B C R 0 D A 2 = A
55 50 54 oveq12d A B C R 0 D 4 A 2 = 2 A
56 48 55 eqtrd A B C R 0 D 4 A 2 = 2 A
57 56 oveq1d A B C R 0 D 4 A 2 D = 2 A D
58 14 40 57 3eqtrd A B C R 0 D T 2 4 Q U = 2 A D