Step |
Hyp |
Ref |
Expression |
1 |
|
itscnhlc0yqe.q |
|
2 |
|
itscnhlc0yqe.t |
|
3 |
|
itscnhlc0yqe.u |
|
4 |
|
itsclc0yqsollem1.d |
|
5 |
|
recn |
|
6 |
|
recn |
|
7 |
|
recn |
|
8 |
5 6 7
|
3anim123i |
|
9 |
|
recn |
|
10 |
8 9
|
anim12i |
|
11 |
10
|
3adant3 |
|
12 |
1 2 3 4
|
itsclc0yqsollem1 |
|
13 |
11 12
|
syl |
|
14 |
13
|
fveq2d |
|
15 |
|
4re |
|
16 |
15
|
a1i |
|
17 |
|
simp1 |
|
18 |
17
|
resqcld |
|
19 |
18
|
3ad2ant1 |
|
20 |
16 19
|
remulcld |
|
21 |
|
0re |
|
22 |
|
4pos |
|
23 |
21 15 22
|
ltleii |
|
24 |
23
|
a1i |
|
25 |
17
|
sqge0d |
|
26 |
25
|
3ad2ant1 |
|
27 |
16 19 24 26
|
mulge0d |
|
28 |
|
simp2 |
|
29 |
28
|
resqcld |
|
30 |
1
|
resum2sqcl |
|
31 |
30
|
3adant3 |
|
32 |
31
|
3ad2ant1 |
|
33 |
29 32
|
remulcld |
|
34 |
|
simp3 |
|
35 |
34
|
resqcld |
|
36 |
35
|
3ad2ant1 |
|
37 |
33 36
|
resubcld |
|
38 |
4 37
|
eqeltrid |
|
39 |
|
simp3 |
|
40 |
20 27 38 39
|
sqrtmuld |
|
41 |
15 23
|
pm3.2i |
|
42 |
41
|
a1i |
|
43 |
|
resqcl |
|
44 |
|
sqge0 |
|
45 |
|
sqrtmul |
|
46 |
42 43 44 45
|
syl12anc |
|
47 |
46
|
3ad2ant1 |
|
48 |
47
|
3ad2ant1 |
|
49 |
|
sqrt4 |
|
50 |
49
|
a1i |
|
51 |
|
absre |
|
52 |
51
|
eqcomd |
|
53 |
52
|
3ad2ant1 |
|
54 |
53
|
3ad2ant1 |
|
55 |
50 54
|
oveq12d |
|
56 |
48 55
|
eqtrd |
|
57 |
56
|
oveq1d |
|
58 |
14 40 57
|
3eqtrd |
|