Metamath Proof Explorer


Theorem itschlc0xyqsol

Description: Lemma for itsclc0 . Solutions of the quadratic equations for the coordinates of the intersection points of a horizontal line and a circle. (Contributed by AV, 8-Feb-2023)

Ref Expression
Hypotheses itscnhlc0yqe.q Q=A2+B2
itsclc0yqsol.d D=R2QC2
Assertion itschlc0xyqsol ABCA=0B0R+0DXYX2+Y2=R2AX+BY=CX=AC+BDQY=BCADQX=ACBDQY=BC+ADQ

Proof

Step Hyp Ref Expression
1 itscnhlc0yqe.q Q=A2+B2
2 itsclc0yqsol.d D=R2QC2
3 1 2 itschlc0xyqsol1 ABCA=0B0R+0DXYX2+Y2=R2AX+BY=CY=CBX=DBX=DB
4 orcom X=DBX=DBX=DBX=DB
5 oveq1 A=0AC=0C
6 5 ad2antrl ABCA=0B0AC=0C
7 6 adantr ABCA=0B0R+0DAC=0C
8 simpll3 ABCA=0B0R+0DC
9 8 recnd ABCA=0B0R+0DC
10 9 mul02d ABCA=0B0R+0D0C=0
11 7 10 eqtrd ABCA=0B0R+0DAC=0
12 11 oveq1d ABCA=0B0R+0DAC+BD=0+BD
13 simpll2 ABCA=0B0R+0DB
14 13 recnd ABCA=0B0R+0DB
15 rpre R+R
16 15 adantr R+0DR
17 16 recnd R+0DR
18 17 adantl ABCA=0B0R+0DR
19 18 sqcld ABCA=0B0R+0DR2
20 1 resum2sqcl ABQ
21 20 recnd ABQ
22 21 3adant3 ABCQ
23 22 adantr ABCA=0B0Q
24 23 adantr ABCA=0B0R+0DQ
25 19 24 mulcld ABCA=0B0R+0DR2Q
26 9 sqcld ABCA=0B0R+0DC2
27 25 26 subcld ABCA=0B0R+0DR2QC2
28 2 27 eqeltrid ABCA=0B0R+0DD
29 28 sqrtcld ABCA=0B0R+0DD
30 14 29 mulcld ABCA=0B0R+0DBD
31 30 addlidd ABCA=0B0R+0D0+BD=BD
32 12 31 eqtrd ABCA=0B0R+0DAC+BD=BD
33 32 oveq1d ABCA=0B0R+0DAC+BDQ=BDQ
34 sq0i A=0A2=0
35 34 ad2antrl ABCA=0B0A2=0
36 35 oveq1d ABCA=0B0A2+B2=0+B2
37 simp2 ABCB
38 37 recnd ABCB
39 38 sqcld ABCB2
40 39 addlidd ABC0+B2=B2
41 38 sqvald ABCB2=BB
42 40 41 eqtrd ABC0+B2=BB
43 42 adantr ABCA=0B00+B2=BB
44 36 43 eqtrd ABCA=0B0A2+B2=BB
45 1 44 eqtrid ABCA=0B0Q=BB
46 45 adantr ABCA=0B0R+0DQ=BB
47 46 oveq2d ABCA=0B0R+0DBDQ=BDBB
48 simplrr ABCA=0B0R+0DB0
49 29 14 14 48 48 divcan5d ABCA=0B0R+0DBDBB=DB
50 47 49 eqtrd ABCA=0B0R+0DBDQ=DB
51 33 50 eqtrd ABCA=0B0R+0DAC+BDQ=DB
52 51 3adant3 ABCA=0B0R+0DXYAC+BDQ=DB
53 52 adantr ABCA=0B0R+0DXYY=CBAC+BDQ=DB
54 53 eqcomd ABCA=0B0R+0DXYY=CBDB=AC+BDQ
55 54 eqeq2d ABCA=0B0R+0DXYY=CBX=DBX=AC+BDQ
56 55 biimpd ABCA=0B0R+0DXYY=CBX=DBX=AC+BDQ
57 oveq1 A=0AD=0D
58 57 ad2antrl ABCA=0B0AD=0D
59 58 adantr ABCA=0B0R+0DAD=0D
60 29 mul02d ABCA=0B0R+0D0D=0
61 59 60 eqtrd ABCA=0B0R+0DAD=0
62 61 oveq2d ABCA=0B0R+0DBCAD=BC0
63 14 9 mulcld ABCA=0B0R+0DBC
64 63 subid1d ABCA=0B0R+0DBC0=BC
65 62 64 eqtrd ABCA=0B0R+0DBCAD=BC
66 65 46 oveq12d ABCA=0B0R+0DBCADQ=BCBB
67 66 3adant3 ABCA=0B0R+0DXYBCADQ=BCBB
68 9 3adant3 ABCA=0B0R+0DXYC
69 14 3adant3 ABCA=0B0R+0DXYB
70 simp1rr ABCA=0B0R+0DXYB0
71 68 69 69 70 70 divcan5d ABCA=0B0R+0DXYBCBB=CB
72 67 71 eqtr2d ABCA=0B0R+0DXYCB=BCADQ
73 72 eqeq2d ABCA=0B0R+0DXYY=CBY=BCADQ
74 73 biimpa ABCA=0B0R+0DXYY=CBY=BCADQ
75 56 74 jctird ABCA=0B0R+0DXYY=CBX=DBX=AC+BDQY=BCADQ
76 14 29 mulneg2d ABCA=0B0R+0DBD=BD
77 76 eqcomd ABCA=0B0R+0DBD=BD
78 77 46 oveq12d ABCA=0B0R+0DBDQ=BDBB
79 29 negcld ABCA=0B0R+0DD
80 79 14 14 48 48 divcan5d ABCA=0B0R+0DBDBB=DB
81 78 80 eqtrd ABCA=0B0R+0DBDQ=DB
82 11 oveq1d ABCA=0B0R+0DACBD=0BD
83 df-neg BD=0BD
84 82 83 eqtr4di ABCA=0B0R+0DACBD=BD
85 84 oveq1d ABCA=0B0R+0DACBDQ=BDQ
86 29 14 48 divnegd ABCA=0B0R+0DDB=DB
87 81 85 86 3eqtr4d ABCA=0B0R+0DACBDQ=DB
88 87 3adant3 ABCA=0B0R+0DXYACBDQ=DB
89 88 adantr ABCA=0B0R+0DXYY=CBACBDQ=DB
90 89 eqcomd ABCA=0B0R+0DXYY=CBDB=ACBDQ
91 90 eqeq2d ABCA=0B0R+0DXYY=CBX=DBX=ACBDQ
92 91 biimpd ABCA=0B0R+0DXYY=CBX=DBX=ACBDQ
93 58 3ad2ant1 ABCA=0B0R+0DXYAD=0D
94 17 3ad2ant2 ABCA=0B0R+0DXYR
95 94 sqcld ABCA=0B0R+0DXYR2
96 23 3ad2ant1 ABCA=0B0R+0DXYQ
97 95 96 mulcld ABCA=0B0R+0DXYR2Q
98 simp1l3 ABCA=0B0R+0DXYC
99 98 recnd ABCA=0B0R+0DXYC
100 99 sqcld ABCA=0B0R+0DXYC2
101 97 100 subcld ABCA=0B0R+0DXYR2QC2
102 2 101 eqeltrid ABCA=0B0R+0DXYD
103 102 sqrtcld ABCA=0B0R+0DXYD
104 103 mul02d ABCA=0B0R+0DXY0D=0
105 93 104 eqtrd ABCA=0B0R+0DXYAD=0
106 105 oveq2d ABCA=0B0R+0DXYBC+AD=BC+0
107 simp1l2 ABCA=0B0R+0DXYB
108 107 recnd ABCA=0B0R+0DXYB
109 108 99 mulcld ABCA=0B0R+0DXYBC
110 109 addridd ABCA=0B0R+0DXYBC+0=BC
111 106 110 eqtrd ABCA=0B0R+0DXYBC+AD=BC
112 45 3ad2ant1 ABCA=0B0R+0DXYQ=BB
113 111 112 oveq12d ABCA=0B0R+0DXYBC+ADQ=BCBB
114 99 108 108 70 70 divcan5d ABCA=0B0R+0DXYBCBB=CB
115 113 114 eqtr2d ABCA=0B0R+0DXYCB=BC+ADQ
116 115 eqeq2d ABCA=0B0R+0DXYY=CBY=BC+ADQ
117 116 biimpa ABCA=0B0R+0DXYY=CBY=BC+ADQ
118 92 117 jctird ABCA=0B0R+0DXYY=CBX=DBX=ACBDQY=BC+ADQ
119 75 118 orim12d ABCA=0B0R+0DXYY=CBX=DBX=DBX=AC+BDQY=BCADQX=ACBDQY=BC+ADQ
120 4 119 biimtrid ABCA=0B0R+0DXYY=CBX=DBX=DBX=AC+BDQY=BCADQX=ACBDQY=BC+ADQ
121 120 expimpd ABCA=0B0R+0DXYY=CBX=DBX=DBX=AC+BDQY=BCADQX=ACBDQY=BC+ADQ
122 3 121 syld ABCA=0B0R+0DXYX2+Y2=R2AX+BY=CX=AC+BDQY=BCADQX=ACBDQY=BC+ADQ