Step |
Hyp |
Ref |
Expression |
1 |
|
itscnhlc0yqe.q |
|
2 |
|
itsclc0yqsol.d |
|
3 |
1 2
|
itschlc0xyqsol1 |
|
4 |
|
orcom |
|
5 |
|
oveq1 |
|
6 |
5
|
ad2antrl |
|
7 |
6
|
adantr |
|
8 |
|
simpll3 |
|
9 |
8
|
recnd |
|
10 |
9
|
mul02d |
|
11 |
7 10
|
eqtrd |
|
12 |
11
|
oveq1d |
|
13 |
|
simpll2 |
|
14 |
13
|
recnd |
|
15 |
|
rpre |
|
16 |
15
|
adantr |
|
17 |
16
|
recnd |
|
18 |
17
|
adantl |
|
19 |
18
|
sqcld |
|
20 |
1
|
resum2sqcl |
|
21 |
20
|
recnd |
|
22 |
21
|
3adant3 |
|
23 |
22
|
adantr |
|
24 |
23
|
adantr |
|
25 |
19 24
|
mulcld |
|
26 |
9
|
sqcld |
|
27 |
25 26
|
subcld |
|
28 |
2 27
|
eqeltrid |
|
29 |
28
|
sqrtcld |
|
30 |
14 29
|
mulcld |
|
31 |
30
|
addid2d |
|
32 |
12 31
|
eqtrd |
|
33 |
32
|
oveq1d |
|
34 |
|
sq0i |
|
35 |
34
|
ad2antrl |
|
36 |
35
|
oveq1d |
|
37 |
|
simp2 |
|
38 |
37
|
recnd |
|
39 |
38
|
sqcld |
|
40 |
39
|
addid2d |
|
41 |
38
|
sqvald |
|
42 |
40 41
|
eqtrd |
|
43 |
42
|
adantr |
|
44 |
36 43
|
eqtrd |
|
45 |
1 44
|
syl5eq |
|
46 |
45
|
adantr |
|
47 |
46
|
oveq2d |
|
48 |
|
simplrr |
|
49 |
29 14 14 48 48
|
divcan5d |
|
50 |
47 49
|
eqtrd |
|
51 |
33 50
|
eqtrd |
|
52 |
51
|
3adant3 |
|
53 |
52
|
adantr |
|
54 |
53
|
eqcomd |
|
55 |
54
|
eqeq2d |
|
56 |
55
|
biimpd |
|
57 |
|
oveq1 |
|
58 |
57
|
ad2antrl |
|
59 |
58
|
adantr |
|
60 |
29
|
mul02d |
|
61 |
59 60
|
eqtrd |
|
62 |
61
|
oveq2d |
|
63 |
14 9
|
mulcld |
|
64 |
63
|
subid1d |
|
65 |
62 64
|
eqtrd |
|
66 |
65 46
|
oveq12d |
|
67 |
66
|
3adant3 |
|
68 |
9
|
3adant3 |
|
69 |
14
|
3adant3 |
|
70 |
|
simp1rr |
|
71 |
68 69 69 70 70
|
divcan5d |
|
72 |
67 71
|
eqtr2d |
|
73 |
72
|
eqeq2d |
|
74 |
73
|
biimpa |
|
75 |
56 74
|
jctird |
|
76 |
14 29
|
mulneg2d |
|
77 |
76
|
eqcomd |
|
78 |
77 46
|
oveq12d |
|
79 |
29
|
negcld |
|
80 |
79 14 14 48 48
|
divcan5d |
|
81 |
78 80
|
eqtrd |
|
82 |
11
|
oveq1d |
|
83 |
|
df-neg |
|
84 |
82 83
|
eqtr4di |
|
85 |
84
|
oveq1d |
|
86 |
29 14 48
|
divnegd |
|
87 |
81 85 86
|
3eqtr4d |
|
88 |
87
|
3adant3 |
|
89 |
88
|
adantr |
|
90 |
89
|
eqcomd |
|
91 |
90
|
eqeq2d |
|
92 |
91
|
biimpd |
|
93 |
58
|
3ad2ant1 |
|
94 |
17
|
3ad2ant2 |
|
95 |
94
|
sqcld |
|
96 |
23
|
3ad2ant1 |
|
97 |
95 96
|
mulcld |
|
98 |
|
simp1l3 |
|
99 |
98
|
recnd |
|
100 |
99
|
sqcld |
|
101 |
97 100
|
subcld |
|
102 |
2 101
|
eqeltrid |
|
103 |
102
|
sqrtcld |
|
104 |
103
|
mul02d |
|
105 |
93 104
|
eqtrd |
|
106 |
105
|
oveq2d |
|
107 |
|
simp1l2 |
|
108 |
107
|
recnd |
|
109 |
108 99
|
mulcld |
|
110 |
109
|
addid1d |
|
111 |
106 110
|
eqtrd |
|
112 |
45
|
3ad2ant1 |
|
113 |
111 112
|
oveq12d |
|
114 |
99 108 108 70 70
|
divcan5d |
|
115 |
113 114
|
eqtr2d |
|
116 |
115
|
eqeq2d |
|
117 |
116
|
biimpa |
|
118 |
92 117
|
jctird |
|
119 |
75 118
|
orim12d |
|
120 |
4 119
|
syl5bi |
|
121 |
120
|
expimpd |
|
122 |
3 121
|
syld |
|