Step |
Hyp |
Ref |
Expression |
1 |
|
itscnhlc0yqe.q |
⊢ 𝑄 = ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) |
2 |
|
itsclc0yqsol.d |
⊢ 𝐷 = ( ( ( 𝑅 ↑ 2 ) · 𝑄 ) − ( 𝐶 ↑ 2 ) ) |
3 |
1 2
|
itschlc0xyqsol1 |
⊢ ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ∧ ( 𝐴 = 0 ∧ 𝐵 ≠ 0 ) ) ∧ ( 𝑅 ∈ ℝ+ ∧ 0 ≤ 𝐷 ) ∧ ( 𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ ) ) → ( ( ( ( 𝑋 ↑ 2 ) + ( 𝑌 ↑ 2 ) ) = ( 𝑅 ↑ 2 ) ∧ ( ( 𝐴 · 𝑋 ) + ( 𝐵 · 𝑌 ) ) = 𝐶 ) → ( 𝑌 = ( 𝐶 / 𝐵 ) ∧ ( 𝑋 = - ( ( √ ‘ 𝐷 ) / 𝐵 ) ∨ 𝑋 = ( ( √ ‘ 𝐷 ) / 𝐵 ) ) ) ) ) |
4 |
|
orcom |
⊢ ( ( 𝑋 = - ( ( √ ‘ 𝐷 ) / 𝐵 ) ∨ 𝑋 = ( ( √ ‘ 𝐷 ) / 𝐵 ) ) ↔ ( 𝑋 = ( ( √ ‘ 𝐷 ) / 𝐵 ) ∨ 𝑋 = - ( ( √ ‘ 𝐷 ) / 𝐵 ) ) ) |
5 |
|
oveq1 |
⊢ ( 𝐴 = 0 → ( 𝐴 · 𝐶 ) = ( 0 · 𝐶 ) ) |
6 |
5
|
ad2antrl |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ∧ ( 𝐴 = 0 ∧ 𝐵 ≠ 0 ) ) → ( 𝐴 · 𝐶 ) = ( 0 · 𝐶 ) ) |
7 |
6
|
adantr |
⊢ ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ∧ ( 𝐴 = 0 ∧ 𝐵 ≠ 0 ) ) ∧ ( 𝑅 ∈ ℝ+ ∧ 0 ≤ 𝐷 ) ) → ( 𝐴 · 𝐶 ) = ( 0 · 𝐶 ) ) |
8 |
|
simpll3 |
⊢ ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ∧ ( 𝐴 = 0 ∧ 𝐵 ≠ 0 ) ) ∧ ( 𝑅 ∈ ℝ+ ∧ 0 ≤ 𝐷 ) ) → 𝐶 ∈ ℝ ) |
9 |
8
|
recnd |
⊢ ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ∧ ( 𝐴 = 0 ∧ 𝐵 ≠ 0 ) ) ∧ ( 𝑅 ∈ ℝ+ ∧ 0 ≤ 𝐷 ) ) → 𝐶 ∈ ℂ ) |
10 |
9
|
mul02d |
⊢ ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ∧ ( 𝐴 = 0 ∧ 𝐵 ≠ 0 ) ) ∧ ( 𝑅 ∈ ℝ+ ∧ 0 ≤ 𝐷 ) ) → ( 0 · 𝐶 ) = 0 ) |
11 |
7 10
|
eqtrd |
⊢ ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ∧ ( 𝐴 = 0 ∧ 𝐵 ≠ 0 ) ) ∧ ( 𝑅 ∈ ℝ+ ∧ 0 ≤ 𝐷 ) ) → ( 𝐴 · 𝐶 ) = 0 ) |
12 |
11
|
oveq1d |
⊢ ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ∧ ( 𝐴 = 0 ∧ 𝐵 ≠ 0 ) ) ∧ ( 𝑅 ∈ ℝ+ ∧ 0 ≤ 𝐷 ) ) → ( ( 𝐴 · 𝐶 ) + ( 𝐵 · ( √ ‘ 𝐷 ) ) ) = ( 0 + ( 𝐵 · ( √ ‘ 𝐷 ) ) ) ) |
13 |
|
simpll2 |
⊢ ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ∧ ( 𝐴 = 0 ∧ 𝐵 ≠ 0 ) ) ∧ ( 𝑅 ∈ ℝ+ ∧ 0 ≤ 𝐷 ) ) → 𝐵 ∈ ℝ ) |
14 |
13
|
recnd |
⊢ ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ∧ ( 𝐴 = 0 ∧ 𝐵 ≠ 0 ) ) ∧ ( 𝑅 ∈ ℝ+ ∧ 0 ≤ 𝐷 ) ) → 𝐵 ∈ ℂ ) |
15 |
|
rpre |
⊢ ( 𝑅 ∈ ℝ+ → 𝑅 ∈ ℝ ) |
16 |
15
|
adantr |
⊢ ( ( 𝑅 ∈ ℝ+ ∧ 0 ≤ 𝐷 ) → 𝑅 ∈ ℝ ) |
17 |
16
|
recnd |
⊢ ( ( 𝑅 ∈ ℝ+ ∧ 0 ≤ 𝐷 ) → 𝑅 ∈ ℂ ) |
18 |
17
|
adantl |
⊢ ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ∧ ( 𝐴 = 0 ∧ 𝐵 ≠ 0 ) ) ∧ ( 𝑅 ∈ ℝ+ ∧ 0 ≤ 𝐷 ) ) → 𝑅 ∈ ℂ ) |
19 |
18
|
sqcld |
⊢ ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ∧ ( 𝐴 = 0 ∧ 𝐵 ≠ 0 ) ) ∧ ( 𝑅 ∈ ℝ+ ∧ 0 ≤ 𝐷 ) ) → ( 𝑅 ↑ 2 ) ∈ ℂ ) |
20 |
1
|
resum2sqcl |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → 𝑄 ∈ ℝ ) |
21 |
20
|
recnd |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → 𝑄 ∈ ℂ ) |
22 |
21
|
3adant3 |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) → 𝑄 ∈ ℂ ) |
23 |
22
|
adantr |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ∧ ( 𝐴 = 0 ∧ 𝐵 ≠ 0 ) ) → 𝑄 ∈ ℂ ) |
24 |
23
|
adantr |
⊢ ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ∧ ( 𝐴 = 0 ∧ 𝐵 ≠ 0 ) ) ∧ ( 𝑅 ∈ ℝ+ ∧ 0 ≤ 𝐷 ) ) → 𝑄 ∈ ℂ ) |
25 |
19 24
|
mulcld |
⊢ ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ∧ ( 𝐴 = 0 ∧ 𝐵 ≠ 0 ) ) ∧ ( 𝑅 ∈ ℝ+ ∧ 0 ≤ 𝐷 ) ) → ( ( 𝑅 ↑ 2 ) · 𝑄 ) ∈ ℂ ) |
26 |
9
|
sqcld |
⊢ ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ∧ ( 𝐴 = 0 ∧ 𝐵 ≠ 0 ) ) ∧ ( 𝑅 ∈ ℝ+ ∧ 0 ≤ 𝐷 ) ) → ( 𝐶 ↑ 2 ) ∈ ℂ ) |
27 |
25 26
|
subcld |
⊢ ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ∧ ( 𝐴 = 0 ∧ 𝐵 ≠ 0 ) ) ∧ ( 𝑅 ∈ ℝ+ ∧ 0 ≤ 𝐷 ) ) → ( ( ( 𝑅 ↑ 2 ) · 𝑄 ) − ( 𝐶 ↑ 2 ) ) ∈ ℂ ) |
28 |
2 27
|
eqeltrid |
⊢ ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ∧ ( 𝐴 = 0 ∧ 𝐵 ≠ 0 ) ) ∧ ( 𝑅 ∈ ℝ+ ∧ 0 ≤ 𝐷 ) ) → 𝐷 ∈ ℂ ) |
29 |
28
|
sqrtcld |
⊢ ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ∧ ( 𝐴 = 0 ∧ 𝐵 ≠ 0 ) ) ∧ ( 𝑅 ∈ ℝ+ ∧ 0 ≤ 𝐷 ) ) → ( √ ‘ 𝐷 ) ∈ ℂ ) |
30 |
14 29
|
mulcld |
⊢ ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ∧ ( 𝐴 = 0 ∧ 𝐵 ≠ 0 ) ) ∧ ( 𝑅 ∈ ℝ+ ∧ 0 ≤ 𝐷 ) ) → ( 𝐵 · ( √ ‘ 𝐷 ) ) ∈ ℂ ) |
31 |
30
|
addid2d |
⊢ ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ∧ ( 𝐴 = 0 ∧ 𝐵 ≠ 0 ) ) ∧ ( 𝑅 ∈ ℝ+ ∧ 0 ≤ 𝐷 ) ) → ( 0 + ( 𝐵 · ( √ ‘ 𝐷 ) ) ) = ( 𝐵 · ( √ ‘ 𝐷 ) ) ) |
32 |
12 31
|
eqtrd |
⊢ ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ∧ ( 𝐴 = 0 ∧ 𝐵 ≠ 0 ) ) ∧ ( 𝑅 ∈ ℝ+ ∧ 0 ≤ 𝐷 ) ) → ( ( 𝐴 · 𝐶 ) + ( 𝐵 · ( √ ‘ 𝐷 ) ) ) = ( 𝐵 · ( √ ‘ 𝐷 ) ) ) |
33 |
32
|
oveq1d |
⊢ ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ∧ ( 𝐴 = 0 ∧ 𝐵 ≠ 0 ) ) ∧ ( 𝑅 ∈ ℝ+ ∧ 0 ≤ 𝐷 ) ) → ( ( ( 𝐴 · 𝐶 ) + ( 𝐵 · ( √ ‘ 𝐷 ) ) ) / 𝑄 ) = ( ( 𝐵 · ( √ ‘ 𝐷 ) ) / 𝑄 ) ) |
34 |
|
sq0i |
⊢ ( 𝐴 = 0 → ( 𝐴 ↑ 2 ) = 0 ) |
35 |
34
|
ad2antrl |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ∧ ( 𝐴 = 0 ∧ 𝐵 ≠ 0 ) ) → ( 𝐴 ↑ 2 ) = 0 ) |
36 |
35
|
oveq1d |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ∧ ( 𝐴 = 0 ∧ 𝐵 ≠ 0 ) ) → ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) = ( 0 + ( 𝐵 ↑ 2 ) ) ) |
37 |
|
simp2 |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) → 𝐵 ∈ ℝ ) |
38 |
37
|
recnd |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) → 𝐵 ∈ ℂ ) |
39 |
38
|
sqcld |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) → ( 𝐵 ↑ 2 ) ∈ ℂ ) |
40 |
39
|
addid2d |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) → ( 0 + ( 𝐵 ↑ 2 ) ) = ( 𝐵 ↑ 2 ) ) |
41 |
38
|
sqvald |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) → ( 𝐵 ↑ 2 ) = ( 𝐵 · 𝐵 ) ) |
42 |
40 41
|
eqtrd |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) → ( 0 + ( 𝐵 ↑ 2 ) ) = ( 𝐵 · 𝐵 ) ) |
43 |
42
|
adantr |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ∧ ( 𝐴 = 0 ∧ 𝐵 ≠ 0 ) ) → ( 0 + ( 𝐵 ↑ 2 ) ) = ( 𝐵 · 𝐵 ) ) |
44 |
36 43
|
eqtrd |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ∧ ( 𝐴 = 0 ∧ 𝐵 ≠ 0 ) ) → ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) = ( 𝐵 · 𝐵 ) ) |
45 |
1 44
|
syl5eq |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ∧ ( 𝐴 = 0 ∧ 𝐵 ≠ 0 ) ) → 𝑄 = ( 𝐵 · 𝐵 ) ) |
46 |
45
|
adantr |
⊢ ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ∧ ( 𝐴 = 0 ∧ 𝐵 ≠ 0 ) ) ∧ ( 𝑅 ∈ ℝ+ ∧ 0 ≤ 𝐷 ) ) → 𝑄 = ( 𝐵 · 𝐵 ) ) |
47 |
46
|
oveq2d |
⊢ ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ∧ ( 𝐴 = 0 ∧ 𝐵 ≠ 0 ) ) ∧ ( 𝑅 ∈ ℝ+ ∧ 0 ≤ 𝐷 ) ) → ( ( 𝐵 · ( √ ‘ 𝐷 ) ) / 𝑄 ) = ( ( 𝐵 · ( √ ‘ 𝐷 ) ) / ( 𝐵 · 𝐵 ) ) ) |
48 |
|
simplrr |
⊢ ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ∧ ( 𝐴 = 0 ∧ 𝐵 ≠ 0 ) ) ∧ ( 𝑅 ∈ ℝ+ ∧ 0 ≤ 𝐷 ) ) → 𝐵 ≠ 0 ) |
49 |
29 14 14 48 48
|
divcan5d |
⊢ ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ∧ ( 𝐴 = 0 ∧ 𝐵 ≠ 0 ) ) ∧ ( 𝑅 ∈ ℝ+ ∧ 0 ≤ 𝐷 ) ) → ( ( 𝐵 · ( √ ‘ 𝐷 ) ) / ( 𝐵 · 𝐵 ) ) = ( ( √ ‘ 𝐷 ) / 𝐵 ) ) |
50 |
47 49
|
eqtrd |
⊢ ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ∧ ( 𝐴 = 0 ∧ 𝐵 ≠ 0 ) ) ∧ ( 𝑅 ∈ ℝ+ ∧ 0 ≤ 𝐷 ) ) → ( ( 𝐵 · ( √ ‘ 𝐷 ) ) / 𝑄 ) = ( ( √ ‘ 𝐷 ) / 𝐵 ) ) |
51 |
33 50
|
eqtrd |
⊢ ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ∧ ( 𝐴 = 0 ∧ 𝐵 ≠ 0 ) ) ∧ ( 𝑅 ∈ ℝ+ ∧ 0 ≤ 𝐷 ) ) → ( ( ( 𝐴 · 𝐶 ) + ( 𝐵 · ( √ ‘ 𝐷 ) ) ) / 𝑄 ) = ( ( √ ‘ 𝐷 ) / 𝐵 ) ) |
52 |
51
|
3adant3 |
⊢ ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ∧ ( 𝐴 = 0 ∧ 𝐵 ≠ 0 ) ) ∧ ( 𝑅 ∈ ℝ+ ∧ 0 ≤ 𝐷 ) ∧ ( 𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ ) ) → ( ( ( 𝐴 · 𝐶 ) + ( 𝐵 · ( √ ‘ 𝐷 ) ) ) / 𝑄 ) = ( ( √ ‘ 𝐷 ) / 𝐵 ) ) |
53 |
52
|
adantr |
⊢ ( ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ∧ ( 𝐴 = 0 ∧ 𝐵 ≠ 0 ) ) ∧ ( 𝑅 ∈ ℝ+ ∧ 0 ≤ 𝐷 ) ∧ ( 𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ ) ) ∧ 𝑌 = ( 𝐶 / 𝐵 ) ) → ( ( ( 𝐴 · 𝐶 ) + ( 𝐵 · ( √ ‘ 𝐷 ) ) ) / 𝑄 ) = ( ( √ ‘ 𝐷 ) / 𝐵 ) ) |
54 |
53
|
eqcomd |
⊢ ( ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ∧ ( 𝐴 = 0 ∧ 𝐵 ≠ 0 ) ) ∧ ( 𝑅 ∈ ℝ+ ∧ 0 ≤ 𝐷 ) ∧ ( 𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ ) ) ∧ 𝑌 = ( 𝐶 / 𝐵 ) ) → ( ( √ ‘ 𝐷 ) / 𝐵 ) = ( ( ( 𝐴 · 𝐶 ) + ( 𝐵 · ( √ ‘ 𝐷 ) ) ) / 𝑄 ) ) |
55 |
54
|
eqeq2d |
⊢ ( ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ∧ ( 𝐴 = 0 ∧ 𝐵 ≠ 0 ) ) ∧ ( 𝑅 ∈ ℝ+ ∧ 0 ≤ 𝐷 ) ∧ ( 𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ ) ) ∧ 𝑌 = ( 𝐶 / 𝐵 ) ) → ( 𝑋 = ( ( √ ‘ 𝐷 ) / 𝐵 ) ↔ 𝑋 = ( ( ( 𝐴 · 𝐶 ) + ( 𝐵 · ( √ ‘ 𝐷 ) ) ) / 𝑄 ) ) ) |
56 |
55
|
biimpd |
⊢ ( ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ∧ ( 𝐴 = 0 ∧ 𝐵 ≠ 0 ) ) ∧ ( 𝑅 ∈ ℝ+ ∧ 0 ≤ 𝐷 ) ∧ ( 𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ ) ) ∧ 𝑌 = ( 𝐶 / 𝐵 ) ) → ( 𝑋 = ( ( √ ‘ 𝐷 ) / 𝐵 ) → 𝑋 = ( ( ( 𝐴 · 𝐶 ) + ( 𝐵 · ( √ ‘ 𝐷 ) ) ) / 𝑄 ) ) ) |
57 |
|
oveq1 |
⊢ ( 𝐴 = 0 → ( 𝐴 · ( √ ‘ 𝐷 ) ) = ( 0 · ( √ ‘ 𝐷 ) ) ) |
58 |
57
|
ad2antrl |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ∧ ( 𝐴 = 0 ∧ 𝐵 ≠ 0 ) ) → ( 𝐴 · ( √ ‘ 𝐷 ) ) = ( 0 · ( √ ‘ 𝐷 ) ) ) |
59 |
58
|
adantr |
⊢ ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ∧ ( 𝐴 = 0 ∧ 𝐵 ≠ 0 ) ) ∧ ( 𝑅 ∈ ℝ+ ∧ 0 ≤ 𝐷 ) ) → ( 𝐴 · ( √ ‘ 𝐷 ) ) = ( 0 · ( √ ‘ 𝐷 ) ) ) |
60 |
29
|
mul02d |
⊢ ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ∧ ( 𝐴 = 0 ∧ 𝐵 ≠ 0 ) ) ∧ ( 𝑅 ∈ ℝ+ ∧ 0 ≤ 𝐷 ) ) → ( 0 · ( √ ‘ 𝐷 ) ) = 0 ) |
61 |
59 60
|
eqtrd |
⊢ ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ∧ ( 𝐴 = 0 ∧ 𝐵 ≠ 0 ) ) ∧ ( 𝑅 ∈ ℝ+ ∧ 0 ≤ 𝐷 ) ) → ( 𝐴 · ( √ ‘ 𝐷 ) ) = 0 ) |
62 |
61
|
oveq2d |
⊢ ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ∧ ( 𝐴 = 0 ∧ 𝐵 ≠ 0 ) ) ∧ ( 𝑅 ∈ ℝ+ ∧ 0 ≤ 𝐷 ) ) → ( ( 𝐵 · 𝐶 ) − ( 𝐴 · ( √ ‘ 𝐷 ) ) ) = ( ( 𝐵 · 𝐶 ) − 0 ) ) |
63 |
14 9
|
mulcld |
⊢ ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ∧ ( 𝐴 = 0 ∧ 𝐵 ≠ 0 ) ) ∧ ( 𝑅 ∈ ℝ+ ∧ 0 ≤ 𝐷 ) ) → ( 𝐵 · 𝐶 ) ∈ ℂ ) |
64 |
63
|
subid1d |
⊢ ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ∧ ( 𝐴 = 0 ∧ 𝐵 ≠ 0 ) ) ∧ ( 𝑅 ∈ ℝ+ ∧ 0 ≤ 𝐷 ) ) → ( ( 𝐵 · 𝐶 ) − 0 ) = ( 𝐵 · 𝐶 ) ) |
65 |
62 64
|
eqtrd |
⊢ ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ∧ ( 𝐴 = 0 ∧ 𝐵 ≠ 0 ) ) ∧ ( 𝑅 ∈ ℝ+ ∧ 0 ≤ 𝐷 ) ) → ( ( 𝐵 · 𝐶 ) − ( 𝐴 · ( √ ‘ 𝐷 ) ) ) = ( 𝐵 · 𝐶 ) ) |
66 |
65 46
|
oveq12d |
⊢ ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ∧ ( 𝐴 = 0 ∧ 𝐵 ≠ 0 ) ) ∧ ( 𝑅 ∈ ℝ+ ∧ 0 ≤ 𝐷 ) ) → ( ( ( 𝐵 · 𝐶 ) − ( 𝐴 · ( √ ‘ 𝐷 ) ) ) / 𝑄 ) = ( ( 𝐵 · 𝐶 ) / ( 𝐵 · 𝐵 ) ) ) |
67 |
66
|
3adant3 |
⊢ ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ∧ ( 𝐴 = 0 ∧ 𝐵 ≠ 0 ) ) ∧ ( 𝑅 ∈ ℝ+ ∧ 0 ≤ 𝐷 ) ∧ ( 𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ ) ) → ( ( ( 𝐵 · 𝐶 ) − ( 𝐴 · ( √ ‘ 𝐷 ) ) ) / 𝑄 ) = ( ( 𝐵 · 𝐶 ) / ( 𝐵 · 𝐵 ) ) ) |
68 |
9
|
3adant3 |
⊢ ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ∧ ( 𝐴 = 0 ∧ 𝐵 ≠ 0 ) ) ∧ ( 𝑅 ∈ ℝ+ ∧ 0 ≤ 𝐷 ) ∧ ( 𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ ) ) → 𝐶 ∈ ℂ ) |
69 |
14
|
3adant3 |
⊢ ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ∧ ( 𝐴 = 0 ∧ 𝐵 ≠ 0 ) ) ∧ ( 𝑅 ∈ ℝ+ ∧ 0 ≤ 𝐷 ) ∧ ( 𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ ) ) → 𝐵 ∈ ℂ ) |
70 |
|
simp1rr |
⊢ ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ∧ ( 𝐴 = 0 ∧ 𝐵 ≠ 0 ) ) ∧ ( 𝑅 ∈ ℝ+ ∧ 0 ≤ 𝐷 ) ∧ ( 𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ ) ) → 𝐵 ≠ 0 ) |
71 |
68 69 69 70 70
|
divcan5d |
⊢ ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ∧ ( 𝐴 = 0 ∧ 𝐵 ≠ 0 ) ) ∧ ( 𝑅 ∈ ℝ+ ∧ 0 ≤ 𝐷 ) ∧ ( 𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ ) ) → ( ( 𝐵 · 𝐶 ) / ( 𝐵 · 𝐵 ) ) = ( 𝐶 / 𝐵 ) ) |
72 |
67 71
|
eqtr2d |
⊢ ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ∧ ( 𝐴 = 0 ∧ 𝐵 ≠ 0 ) ) ∧ ( 𝑅 ∈ ℝ+ ∧ 0 ≤ 𝐷 ) ∧ ( 𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ ) ) → ( 𝐶 / 𝐵 ) = ( ( ( 𝐵 · 𝐶 ) − ( 𝐴 · ( √ ‘ 𝐷 ) ) ) / 𝑄 ) ) |
73 |
72
|
eqeq2d |
⊢ ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ∧ ( 𝐴 = 0 ∧ 𝐵 ≠ 0 ) ) ∧ ( 𝑅 ∈ ℝ+ ∧ 0 ≤ 𝐷 ) ∧ ( 𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ ) ) → ( 𝑌 = ( 𝐶 / 𝐵 ) ↔ 𝑌 = ( ( ( 𝐵 · 𝐶 ) − ( 𝐴 · ( √ ‘ 𝐷 ) ) ) / 𝑄 ) ) ) |
74 |
73
|
biimpa |
⊢ ( ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ∧ ( 𝐴 = 0 ∧ 𝐵 ≠ 0 ) ) ∧ ( 𝑅 ∈ ℝ+ ∧ 0 ≤ 𝐷 ) ∧ ( 𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ ) ) ∧ 𝑌 = ( 𝐶 / 𝐵 ) ) → 𝑌 = ( ( ( 𝐵 · 𝐶 ) − ( 𝐴 · ( √ ‘ 𝐷 ) ) ) / 𝑄 ) ) |
75 |
56 74
|
jctird |
⊢ ( ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ∧ ( 𝐴 = 0 ∧ 𝐵 ≠ 0 ) ) ∧ ( 𝑅 ∈ ℝ+ ∧ 0 ≤ 𝐷 ) ∧ ( 𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ ) ) ∧ 𝑌 = ( 𝐶 / 𝐵 ) ) → ( 𝑋 = ( ( √ ‘ 𝐷 ) / 𝐵 ) → ( 𝑋 = ( ( ( 𝐴 · 𝐶 ) + ( 𝐵 · ( √ ‘ 𝐷 ) ) ) / 𝑄 ) ∧ 𝑌 = ( ( ( 𝐵 · 𝐶 ) − ( 𝐴 · ( √ ‘ 𝐷 ) ) ) / 𝑄 ) ) ) ) |
76 |
14 29
|
mulneg2d |
⊢ ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ∧ ( 𝐴 = 0 ∧ 𝐵 ≠ 0 ) ) ∧ ( 𝑅 ∈ ℝ+ ∧ 0 ≤ 𝐷 ) ) → ( 𝐵 · - ( √ ‘ 𝐷 ) ) = - ( 𝐵 · ( √ ‘ 𝐷 ) ) ) |
77 |
76
|
eqcomd |
⊢ ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ∧ ( 𝐴 = 0 ∧ 𝐵 ≠ 0 ) ) ∧ ( 𝑅 ∈ ℝ+ ∧ 0 ≤ 𝐷 ) ) → - ( 𝐵 · ( √ ‘ 𝐷 ) ) = ( 𝐵 · - ( √ ‘ 𝐷 ) ) ) |
78 |
77 46
|
oveq12d |
⊢ ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ∧ ( 𝐴 = 0 ∧ 𝐵 ≠ 0 ) ) ∧ ( 𝑅 ∈ ℝ+ ∧ 0 ≤ 𝐷 ) ) → ( - ( 𝐵 · ( √ ‘ 𝐷 ) ) / 𝑄 ) = ( ( 𝐵 · - ( √ ‘ 𝐷 ) ) / ( 𝐵 · 𝐵 ) ) ) |
79 |
29
|
negcld |
⊢ ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ∧ ( 𝐴 = 0 ∧ 𝐵 ≠ 0 ) ) ∧ ( 𝑅 ∈ ℝ+ ∧ 0 ≤ 𝐷 ) ) → - ( √ ‘ 𝐷 ) ∈ ℂ ) |
80 |
79 14 14 48 48
|
divcan5d |
⊢ ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ∧ ( 𝐴 = 0 ∧ 𝐵 ≠ 0 ) ) ∧ ( 𝑅 ∈ ℝ+ ∧ 0 ≤ 𝐷 ) ) → ( ( 𝐵 · - ( √ ‘ 𝐷 ) ) / ( 𝐵 · 𝐵 ) ) = ( - ( √ ‘ 𝐷 ) / 𝐵 ) ) |
81 |
78 80
|
eqtrd |
⊢ ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ∧ ( 𝐴 = 0 ∧ 𝐵 ≠ 0 ) ) ∧ ( 𝑅 ∈ ℝ+ ∧ 0 ≤ 𝐷 ) ) → ( - ( 𝐵 · ( √ ‘ 𝐷 ) ) / 𝑄 ) = ( - ( √ ‘ 𝐷 ) / 𝐵 ) ) |
82 |
11
|
oveq1d |
⊢ ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ∧ ( 𝐴 = 0 ∧ 𝐵 ≠ 0 ) ) ∧ ( 𝑅 ∈ ℝ+ ∧ 0 ≤ 𝐷 ) ) → ( ( 𝐴 · 𝐶 ) − ( 𝐵 · ( √ ‘ 𝐷 ) ) ) = ( 0 − ( 𝐵 · ( √ ‘ 𝐷 ) ) ) ) |
83 |
|
df-neg |
⊢ - ( 𝐵 · ( √ ‘ 𝐷 ) ) = ( 0 − ( 𝐵 · ( √ ‘ 𝐷 ) ) ) |
84 |
82 83
|
eqtr4di |
⊢ ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ∧ ( 𝐴 = 0 ∧ 𝐵 ≠ 0 ) ) ∧ ( 𝑅 ∈ ℝ+ ∧ 0 ≤ 𝐷 ) ) → ( ( 𝐴 · 𝐶 ) − ( 𝐵 · ( √ ‘ 𝐷 ) ) ) = - ( 𝐵 · ( √ ‘ 𝐷 ) ) ) |
85 |
84
|
oveq1d |
⊢ ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ∧ ( 𝐴 = 0 ∧ 𝐵 ≠ 0 ) ) ∧ ( 𝑅 ∈ ℝ+ ∧ 0 ≤ 𝐷 ) ) → ( ( ( 𝐴 · 𝐶 ) − ( 𝐵 · ( √ ‘ 𝐷 ) ) ) / 𝑄 ) = ( - ( 𝐵 · ( √ ‘ 𝐷 ) ) / 𝑄 ) ) |
86 |
29 14 48
|
divnegd |
⊢ ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ∧ ( 𝐴 = 0 ∧ 𝐵 ≠ 0 ) ) ∧ ( 𝑅 ∈ ℝ+ ∧ 0 ≤ 𝐷 ) ) → - ( ( √ ‘ 𝐷 ) / 𝐵 ) = ( - ( √ ‘ 𝐷 ) / 𝐵 ) ) |
87 |
81 85 86
|
3eqtr4d |
⊢ ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ∧ ( 𝐴 = 0 ∧ 𝐵 ≠ 0 ) ) ∧ ( 𝑅 ∈ ℝ+ ∧ 0 ≤ 𝐷 ) ) → ( ( ( 𝐴 · 𝐶 ) − ( 𝐵 · ( √ ‘ 𝐷 ) ) ) / 𝑄 ) = - ( ( √ ‘ 𝐷 ) / 𝐵 ) ) |
88 |
87
|
3adant3 |
⊢ ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ∧ ( 𝐴 = 0 ∧ 𝐵 ≠ 0 ) ) ∧ ( 𝑅 ∈ ℝ+ ∧ 0 ≤ 𝐷 ) ∧ ( 𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ ) ) → ( ( ( 𝐴 · 𝐶 ) − ( 𝐵 · ( √ ‘ 𝐷 ) ) ) / 𝑄 ) = - ( ( √ ‘ 𝐷 ) / 𝐵 ) ) |
89 |
88
|
adantr |
⊢ ( ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ∧ ( 𝐴 = 0 ∧ 𝐵 ≠ 0 ) ) ∧ ( 𝑅 ∈ ℝ+ ∧ 0 ≤ 𝐷 ) ∧ ( 𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ ) ) ∧ 𝑌 = ( 𝐶 / 𝐵 ) ) → ( ( ( 𝐴 · 𝐶 ) − ( 𝐵 · ( √ ‘ 𝐷 ) ) ) / 𝑄 ) = - ( ( √ ‘ 𝐷 ) / 𝐵 ) ) |
90 |
89
|
eqcomd |
⊢ ( ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ∧ ( 𝐴 = 0 ∧ 𝐵 ≠ 0 ) ) ∧ ( 𝑅 ∈ ℝ+ ∧ 0 ≤ 𝐷 ) ∧ ( 𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ ) ) ∧ 𝑌 = ( 𝐶 / 𝐵 ) ) → - ( ( √ ‘ 𝐷 ) / 𝐵 ) = ( ( ( 𝐴 · 𝐶 ) − ( 𝐵 · ( √ ‘ 𝐷 ) ) ) / 𝑄 ) ) |
91 |
90
|
eqeq2d |
⊢ ( ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ∧ ( 𝐴 = 0 ∧ 𝐵 ≠ 0 ) ) ∧ ( 𝑅 ∈ ℝ+ ∧ 0 ≤ 𝐷 ) ∧ ( 𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ ) ) ∧ 𝑌 = ( 𝐶 / 𝐵 ) ) → ( 𝑋 = - ( ( √ ‘ 𝐷 ) / 𝐵 ) ↔ 𝑋 = ( ( ( 𝐴 · 𝐶 ) − ( 𝐵 · ( √ ‘ 𝐷 ) ) ) / 𝑄 ) ) ) |
92 |
91
|
biimpd |
⊢ ( ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ∧ ( 𝐴 = 0 ∧ 𝐵 ≠ 0 ) ) ∧ ( 𝑅 ∈ ℝ+ ∧ 0 ≤ 𝐷 ) ∧ ( 𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ ) ) ∧ 𝑌 = ( 𝐶 / 𝐵 ) ) → ( 𝑋 = - ( ( √ ‘ 𝐷 ) / 𝐵 ) → 𝑋 = ( ( ( 𝐴 · 𝐶 ) − ( 𝐵 · ( √ ‘ 𝐷 ) ) ) / 𝑄 ) ) ) |
93 |
58
|
3ad2ant1 |
⊢ ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ∧ ( 𝐴 = 0 ∧ 𝐵 ≠ 0 ) ) ∧ ( 𝑅 ∈ ℝ+ ∧ 0 ≤ 𝐷 ) ∧ ( 𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ ) ) → ( 𝐴 · ( √ ‘ 𝐷 ) ) = ( 0 · ( √ ‘ 𝐷 ) ) ) |
94 |
17
|
3ad2ant2 |
⊢ ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ∧ ( 𝐴 = 0 ∧ 𝐵 ≠ 0 ) ) ∧ ( 𝑅 ∈ ℝ+ ∧ 0 ≤ 𝐷 ) ∧ ( 𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ ) ) → 𝑅 ∈ ℂ ) |
95 |
94
|
sqcld |
⊢ ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ∧ ( 𝐴 = 0 ∧ 𝐵 ≠ 0 ) ) ∧ ( 𝑅 ∈ ℝ+ ∧ 0 ≤ 𝐷 ) ∧ ( 𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ ) ) → ( 𝑅 ↑ 2 ) ∈ ℂ ) |
96 |
23
|
3ad2ant1 |
⊢ ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ∧ ( 𝐴 = 0 ∧ 𝐵 ≠ 0 ) ) ∧ ( 𝑅 ∈ ℝ+ ∧ 0 ≤ 𝐷 ) ∧ ( 𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ ) ) → 𝑄 ∈ ℂ ) |
97 |
95 96
|
mulcld |
⊢ ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ∧ ( 𝐴 = 0 ∧ 𝐵 ≠ 0 ) ) ∧ ( 𝑅 ∈ ℝ+ ∧ 0 ≤ 𝐷 ) ∧ ( 𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ ) ) → ( ( 𝑅 ↑ 2 ) · 𝑄 ) ∈ ℂ ) |
98 |
|
simp1l3 |
⊢ ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ∧ ( 𝐴 = 0 ∧ 𝐵 ≠ 0 ) ) ∧ ( 𝑅 ∈ ℝ+ ∧ 0 ≤ 𝐷 ) ∧ ( 𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ ) ) → 𝐶 ∈ ℝ ) |
99 |
98
|
recnd |
⊢ ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ∧ ( 𝐴 = 0 ∧ 𝐵 ≠ 0 ) ) ∧ ( 𝑅 ∈ ℝ+ ∧ 0 ≤ 𝐷 ) ∧ ( 𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ ) ) → 𝐶 ∈ ℂ ) |
100 |
99
|
sqcld |
⊢ ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ∧ ( 𝐴 = 0 ∧ 𝐵 ≠ 0 ) ) ∧ ( 𝑅 ∈ ℝ+ ∧ 0 ≤ 𝐷 ) ∧ ( 𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ ) ) → ( 𝐶 ↑ 2 ) ∈ ℂ ) |
101 |
97 100
|
subcld |
⊢ ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ∧ ( 𝐴 = 0 ∧ 𝐵 ≠ 0 ) ) ∧ ( 𝑅 ∈ ℝ+ ∧ 0 ≤ 𝐷 ) ∧ ( 𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ ) ) → ( ( ( 𝑅 ↑ 2 ) · 𝑄 ) − ( 𝐶 ↑ 2 ) ) ∈ ℂ ) |
102 |
2 101
|
eqeltrid |
⊢ ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ∧ ( 𝐴 = 0 ∧ 𝐵 ≠ 0 ) ) ∧ ( 𝑅 ∈ ℝ+ ∧ 0 ≤ 𝐷 ) ∧ ( 𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ ) ) → 𝐷 ∈ ℂ ) |
103 |
102
|
sqrtcld |
⊢ ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ∧ ( 𝐴 = 0 ∧ 𝐵 ≠ 0 ) ) ∧ ( 𝑅 ∈ ℝ+ ∧ 0 ≤ 𝐷 ) ∧ ( 𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ ) ) → ( √ ‘ 𝐷 ) ∈ ℂ ) |
104 |
103
|
mul02d |
⊢ ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ∧ ( 𝐴 = 0 ∧ 𝐵 ≠ 0 ) ) ∧ ( 𝑅 ∈ ℝ+ ∧ 0 ≤ 𝐷 ) ∧ ( 𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ ) ) → ( 0 · ( √ ‘ 𝐷 ) ) = 0 ) |
105 |
93 104
|
eqtrd |
⊢ ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ∧ ( 𝐴 = 0 ∧ 𝐵 ≠ 0 ) ) ∧ ( 𝑅 ∈ ℝ+ ∧ 0 ≤ 𝐷 ) ∧ ( 𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ ) ) → ( 𝐴 · ( √ ‘ 𝐷 ) ) = 0 ) |
106 |
105
|
oveq2d |
⊢ ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ∧ ( 𝐴 = 0 ∧ 𝐵 ≠ 0 ) ) ∧ ( 𝑅 ∈ ℝ+ ∧ 0 ≤ 𝐷 ) ∧ ( 𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ ) ) → ( ( 𝐵 · 𝐶 ) + ( 𝐴 · ( √ ‘ 𝐷 ) ) ) = ( ( 𝐵 · 𝐶 ) + 0 ) ) |
107 |
|
simp1l2 |
⊢ ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ∧ ( 𝐴 = 0 ∧ 𝐵 ≠ 0 ) ) ∧ ( 𝑅 ∈ ℝ+ ∧ 0 ≤ 𝐷 ) ∧ ( 𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ ) ) → 𝐵 ∈ ℝ ) |
108 |
107
|
recnd |
⊢ ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ∧ ( 𝐴 = 0 ∧ 𝐵 ≠ 0 ) ) ∧ ( 𝑅 ∈ ℝ+ ∧ 0 ≤ 𝐷 ) ∧ ( 𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ ) ) → 𝐵 ∈ ℂ ) |
109 |
108 99
|
mulcld |
⊢ ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ∧ ( 𝐴 = 0 ∧ 𝐵 ≠ 0 ) ) ∧ ( 𝑅 ∈ ℝ+ ∧ 0 ≤ 𝐷 ) ∧ ( 𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ ) ) → ( 𝐵 · 𝐶 ) ∈ ℂ ) |
110 |
109
|
addid1d |
⊢ ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ∧ ( 𝐴 = 0 ∧ 𝐵 ≠ 0 ) ) ∧ ( 𝑅 ∈ ℝ+ ∧ 0 ≤ 𝐷 ) ∧ ( 𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ ) ) → ( ( 𝐵 · 𝐶 ) + 0 ) = ( 𝐵 · 𝐶 ) ) |
111 |
106 110
|
eqtrd |
⊢ ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ∧ ( 𝐴 = 0 ∧ 𝐵 ≠ 0 ) ) ∧ ( 𝑅 ∈ ℝ+ ∧ 0 ≤ 𝐷 ) ∧ ( 𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ ) ) → ( ( 𝐵 · 𝐶 ) + ( 𝐴 · ( √ ‘ 𝐷 ) ) ) = ( 𝐵 · 𝐶 ) ) |
112 |
45
|
3ad2ant1 |
⊢ ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ∧ ( 𝐴 = 0 ∧ 𝐵 ≠ 0 ) ) ∧ ( 𝑅 ∈ ℝ+ ∧ 0 ≤ 𝐷 ) ∧ ( 𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ ) ) → 𝑄 = ( 𝐵 · 𝐵 ) ) |
113 |
111 112
|
oveq12d |
⊢ ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ∧ ( 𝐴 = 0 ∧ 𝐵 ≠ 0 ) ) ∧ ( 𝑅 ∈ ℝ+ ∧ 0 ≤ 𝐷 ) ∧ ( 𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ ) ) → ( ( ( 𝐵 · 𝐶 ) + ( 𝐴 · ( √ ‘ 𝐷 ) ) ) / 𝑄 ) = ( ( 𝐵 · 𝐶 ) / ( 𝐵 · 𝐵 ) ) ) |
114 |
99 108 108 70 70
|
divcan5d |
⊢ ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ∧ ( 𝐴 = 0 ∧ 𝐵 ≠ 0 ) ) ∧ ( 𝑅 ∈ ℝ+ ∧ 0 ≤ 𝐷 ) ∧ ( 𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ ) ) → ( ( 𝐵 · 𝐶 ) / ( 𝐵 · 𝐵 ) ) = ( 𝐶 / 𝐵 ) ) |
115 |
113 114
|
eqtr2d |
⊢ ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ∧ ( 𝐴 = 0 ∧ 𝐵 ≠ 0 ) ) ∧ ( 𝑅 ∈ ℝ+ ∧ 0 ≤ 𝐷 ) ∧ ( 𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ ) ) → ( 𝐶 / 𝐵 ) = ( ( ( 𝐵 · 𝐶 ) + ( 𝐴 · ( √ ‘ 𝐷 ) ) ) / 𝑄 ) ) |
116 |
115
|
eqeq2d |
⊢ ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ∧ ( 𝐴 = 0 ∧ 𝐵 ≠ 0 ) ) ∧ ( 𝑅 ∈ ℝ+ ∧ 0 ≤ 𝐷 ) ∧ ( 𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ ) ) → ( 𝑌 = ( 𝐶 / 𝐵 ) ↔ 𝑌 = ( ( ( 𝐵 · 𝐶 ) + ( 𝐴 · ( √ ‘ 𝐷 ) ) ) / 𝑄 ) ) ) |
117 |
116
|
biimpa |
⊢ ( ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ∧ ( 𝐴 = 0 ∧ 𝐵 ≠ 0 ) ) ∧ ( 𝑅 ∈ ℝ+ ∧ 0 ≤ 𝐷 ) ∧ ( 𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ ) ) ∧ 𝑌 = ( 𝐶 / 𝐵 ) ) → 𝑌 = ( ( ( 𝐵 · 𝐶 ) + ( 𝐴 · ( √ ‘ 𝐷 ) ) ) / 𝑄 ) ) |
118 |
92 117
|
jctird |
⊢ ( ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ∧ ( 𝐴 = 0 ∧ 𝐵 ≠ 0 ) ) ∧ ( 𝑅 ∈ ℝ+ ∧ 0 ≤ 𝐷 ) ∧ ( 𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ ) ) ∧ 𝑌 = ( 𝐶 / 𝐵 ) ) → ( 𝑋 = - ( ( √ ‘ 𝐷 ) / 𝐵 ) → ( 𝑋 = ( ( ( 𝐴 · 𝐶 ) − ( 𝐵 · ( √ ‘ 𝐷 ) ) ) / 𝑄 ) ∧ 𝑌 = ( ( ( 𝐵 · 𝐶 ) + ( 𝐴 · ( √ ‘ 𝐷 ) ) ) / 𝑄 ) ) ) ) |
119 |
75 118
|
orim12d |
⊢ ( ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ∧ ( 𝐴 = 0 ∧ 𝐵 ≠ 0 ) ) ∧ ( 𝑅 ∈ ℝ+ ∧ 0 ≤ 𝐷 ) ∧ ( 𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ ) ) ∧ 𝑌 = ( 𝐶 / 𝐵 ) ) → ( ( 𝑋 = ( ( √ ‘ 𝐷 ) / 𝐵 ) ∨ 𝑋 = - ( ( √ ‘ 𝐷 ) / 𝐵 ) ) → ( ( 𝑋 = ( ( ( 𝐴 · 𝐶 ) + ( 𝐵 · ( √ ‘ 𝐷 ) ) ) / 𝑄 ) ∧ 𝑌 = ( ( ( 𝐵 · 𝐶 ) − ( 𝐴 · ( √ ‘ 𝐷 ) ) ) / 𝑄 ) ) ∨ ( 𝑋 = ( ( ( 𝐴 · 𝐶 ) − ( 𝐵 · ( √ ‘ 𝐷 ) ) ) / 𝑄 ) ∧ 𝑌 = ( ( ( 𝐵 · 𝐶 ) + ( 𝐴 · ( √ ‘ 𝐷 ) ) ) / 𝑄 ) ) ) ) ) |
120 |
4 119
|
syl5bi |
⊢ ( ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ∧ ( 𝐴 = 0 ∧ 𝐵 ≠ 0 ) ) ∧ ( 𝑅 ∈ ℝ+ ∧ 0 ≤ 𝐷 ) ∧ ( 𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ ) ) ∧ 𝑌 = ( 𝐶 / 𝐵 ) ) → ( ( 𝑋 = - ( ( √ ‘ 𝐷 ) / 𝐵 ) ∨ 𝑋 = ( ( √ ‘ 𝐷 ) / 𝐵 ) ) → ( ( 𝑋 = ( ( ( 𝐴 · 𝐶 ) + ( 𝐵 · ( √ ‘ 𝐷 ) ) ) / 𝑄 ) ∧ 𝑌 = ( ( ( 𝐵 · 𝐶 ) − ( 𝐴 · ( √ ‘ 𝐷 ) ) ) / 𝑄 ) ) ∨ ( 𝑋 = ( ( ( 𝐴 · 𝐶 ) − ( 𝐵 · ( √ ‘ 𝐷 ) ) ) / 𝑄 ) ∧ 𝑌 = ( ( ( 𝐵 · 𝐶 ) + ( 𝐴 · ( √ ‘ 𝐷 ) ) ) / 𝑄 ) ) ) ) ) |
121 |
120
|
expimpd |
⊢ ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ∧ ( 𝐴 = 0 ∧ 𝐵 ≠ 0 ) ) ∧ ( 𝑅 ∈ ℝ+ ∧ 0 ≤ 𝐷 ) ∧ ( 𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ ) ) → ( ( 𝑌 = ( 𝐶 / 𝐵 ) ∧ ( 𝑋 = - ( ( √ ‘ 𝐷 ) / 𝐵 ) ∨ 𝑋 = ( ( √ ‘ 𝐷 ) / 𝐵 ) ) ) → ( ( 𝑋 = ( ( ( 𝐴 · 𝐶 ) + ( 𝐵 · ( √ ‘ 𝐷 ) ) ) / 𝑄 ) ∧ 𝑌 = ( ( ( 𝐵 · 𝐶 ) − ( 𝐴 · ( √ ‘ 𝐷 ) ) ) / 𝑄 ) ) ∨ ( 𝑋 = ( ( ( 𝐴 · 𝐶 ) − ( 𝐵 · ( √ ‘ 𝐷 ) ) ) / 𝑄 ) ∧ 𝑌 = ( ( ( 𝐵 · 𝐶 ) + ( 𝐴 · ( √ ‘ 𝐷 ) ) ) / 𝑄 ) ) ) ) ) |
122 |
3 121
|
syld |
⊢ ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ∧ ( 𝐴 = 0 ∧ 𝐵 ≠ 0 ) ) ∧ ( 𝑅 ∈ ℝ+ ∧ 0 ≤ 𝐷 ) ∧ ( 𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ ) ) → ( ( ( ( 𝑋 ↑ 2 ) + ( 𝑌 ↑ 2 ) ) = ( 𝑅 ↑ 2 ) ∧ ( ( 𝐴 · 𝑋 ) + ( 𝐵 · 𝑌 ) ) = 𝐶 ) → ( ( 𝑋 = ( ( ( 𝐴 · 𝐶 ) + ( 𝐵 · ( √ ‘ 𝐷 ) ) ) / 𝑄 ) ∧ 𝑌 = ( ( ( 𝐵 · 𝐶 ) − ( 𝐴 · ( √ ‘ 𝐷 ) ) ) / 𝑄 ) ) ∨ ( 𝑋 = ( ( ( 𝐴 · 𝐶 ) − ( 𝐵 · ( √ ‘ 𝐷 ) ) ) / 𝑄 ) ∧ 𝑌 = ( ( ( 𝐵 · 𝐶 ) + ( 𝐴 · ( √ ‘ 𝐷 ) ) ) / 𝑄 ) ) ) ) ) |