Step |
Hyp |
Ref |
Expression |
1 |
|
itscnhlc0yqe.q |
⊢ 𝑄 = ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) |
2 |
|
itsclc0yqsol.d |
⊢ 𝐷 = ( ( ( 𝑅 ↑ 2 ) · 𝑄 ) − ( 𝐶 ↑ 2 ) ) |
3 |
|
simpl |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐴 ≠ 0 ) → 𝐴 ∈ ℝ ) |
4 |
3
|
3anim1i |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐴 ≠ 0 ) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) → ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ) |
5 |
|
simpr |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐴 ≠ 0 ) → 𝐴 ≠ 0 ) |
6 |
5
|
3ad2ant1 |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐴 ≠ 0 ) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) → 𝐴 ≠ 0 ) |
7 |
6
|
orcd |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐴 ≠ 0 ) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) → ( 𝐴 ≠ 0 ∨ 𝐵 ≠ 0 ) ) |
8 |
4 7
|
jca |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐴 ≠ 0 ) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) → ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ∧ ( 𝐴 ≠ 0 ∨ 𝐵 ≠ 0 ) ) ) |
9 |
8
|
3anim1i |
⊢ ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐴 ≠ 0 ) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ∧ ( 𝑅 ∈ ℝ+ ∧ 0 ≤ 𝐷 ) ∧ ( 𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ ) ) → ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ∧ ( 𝐴 ≠ 0 ∨ 𝐵 ≠ 0 ) ) ∧ ( 𝑅 ∈ ℝ+ ∧ 0 ≤ 𝐷 ) ∧ ( 𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ ) ) ) |
10 |
1 2
|
itsclc0yqsol |
⊢ ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ∧ ( 𝐴 ≠ 0 ∨ 𝐵 ≠ 0 ) ) ∧ ( 𝑅 ∈ ℝ+ ∧ 0 ≤ 𝐷 ) ∧ ( 𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ ) ) → ( ( ( ( 𝑋 ↑ 2 ) + ( 𝑌 ↑ 2 ) ) = ( 𝑅 ↑ 2 ) ∧ ( ( 𝐴 · 𝑋 ) + ( 𝐵 · 𝑌 ) ) = 𝐶 ) → ( 𝑌 = ( ( ( 𝐵 · 𝐶 ) − ( 𝐴 · ( √ ‘ 𝐷 ) ) ) / 𝑄 ) ∨ 𝑌 = ( ( ( 𝐵 · 𝐶 ) + ( 𝐴 · ( √ ‘ 𝐷 ) ) ) / 𝑄 ) ) ) ) |
11 |
9 10
|
syl |
⊢ ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐴 ≠ 0 ) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ∧ ( 𝑅 ∈ ℝ+ ∧ 0 ≤ 𝐷 ) ∧ ( 𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ ) ) → ( ( ( ( 𝑋 ↑ 2 ) + ( 𝑌 ↑ 2 ) ) = ( 𝑅 ↑ 2 ) ∧ ( ( 𝐴 · 𝑋 ) + ( 𝐵 · 𝑌 ) ) = 𝐶 ) → ( 𝑌 = ( ( ( 𝐵 · 𝐶 ) − ( 𝐴 · ( √ ‘ 𝐷 ) ) ) / 𝑄 ) ∨ 𝑌 = ( ( ( 𝐵 · 𝐶 ) + ( 𝐴 · ( √ ‘ 𝐷 ) ) ) / 𝑄 ) ) ) ) |
12 |
11
|
imp |
⊢ ( ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐴 ≠ 0 ) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ∧ ( 𝑅 ∈ ℝ+ ∧ 0 ≤ 𝐷 ) ∧ ( 𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ ) ) ∧ ( ( ( 𝑋 ↑ 2 ) + ( 𝑌 ↑ 2 ) ) = ( 𝑅 ↑ 2 ) ∧ ( ( 𝐴 · 𝑋 ) + ( 𝐵 · 𝑌 ) ) = 𝐶 ) ) → ( 𝑌 = ( ( ( 𝐵 · 𝐶 ) − ( 𝐴 · ( √ ‘ 𝐷 ) ) ) / 𝑄 ) ∨ 𝑌 = ( ( ( 𝐵 · 𝐶 ) + ( 𝐴 · ( √ ‘ 𝐷 ) ) ) / 𝑄 ) ) ) |
13 |
|
oveq2 |
⊢ ( 𝑌 = ( ( ( 𝐵 · 𝐶 ) − ( 𝐴 · ( √ ‘ 𝐷 ) ) ) / 𝑄 ) → ( 𝐵 · 𝑌 ) = ( 𝐵 · ( ( ( 𝐵 · 𝐶 ) − ( 𝐴 · ( √ ‘ 𝐷 ) ) ) / 𝑄 ) ) ) |
14 |
13
|
oveq2d |
⊢ ( 𝑌 = ( ( ( 𝐵 · 𝐶 ) − ( 𝐴 · ( √ ‘ 𝐷 ) ) ) / 𝑄 ) → ( ( 𝐴 · 𝑋 ) + ( 𝐵 · 𝑌 ) ) = ( ( 𝐴 · 𝑋 ) + ( 𝐵 · ( ( ( 𝐵 · 𝐶 ) − ( 𝐴 · ( √ ‘ 𝐷 ) ) ) / 𝑄 ) ) ) ) |
15 |
14
|
eqeq1d |
⊢ ( 𝑌 = ( ( ( 𝐵 · 𝐶 ) − ( 𝐴 · ( √ ‘ 𝐷 ) ) ) / 𝑄 ) → ( ( ( 𝐴 · 𝑋 ) + ( 𝐵 · 𝑌 ) ) = 𝐶 ↔ ( ( 𝐴 · 𝑋 ) + ( 𝐵 · ( ( ( 𝐵 · 𝐶 ) − ( 𝐴 · ( √ ‘ 𝐷 ) ) ) / 𝑄 ) ) ) = 𝐶 ) ) |
16 |
|
simp12 |
⊢ ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐴 ≠ 0 ) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ∧ ( 𝑅 ∈ ℝ+ ∧ 0 ≤ 𝐷 ) ∧ ( 𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ ) ) → 𝐵 ∈ ℝ ) |
17 |
16
|
recnd |
⊢ ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐴 ≠ 0 ) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ∧ ( 𝑅 ∈ ℝ+ ∧ 0 ≤ 𝐷 ) ∧ ( 𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ ) ) → 𝐵 ∈ ℂ ) |
18 |
|
simp13 |
⊢ ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐴 ≠ 0 ) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ∧ ( 𝑅 ∈ ℝ+ ∧ 0 ≤ 𝐷 ) ∧ ( 𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ ) ) → 𝐶 ∈ ℝ ) |
19 |
18
|
recnd |
⊢ ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐴 ≠ 0 ) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ∧ ( 𝑅 ∈ ℝ+ ∧ 0 ≤ 𝐷 ) ∧ ( 𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ ) ) → 𝐶 ∈ ℂ ) |
20 |
17 19
|
mulcld |
⊢ ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐴 ≠ 0 ) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ∧ ( 𝑅 ∈ ℝ+ ∧ 0 ≤ 𝐷 ) ∧ ( 𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ ) ) → ( 𝐵 · 𝐶 ) ∈ ℂ ) |
21 |
|
simp11l |
⊢ ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐴 ≠ 0 ) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ∧ ( 𝑅 ∈ ℝ+ ∧ 0 ≤ 𝐷 ) ∧ ( 𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ ) ) → 𝐴 ∈ ℝ ) |
22 |
21
|
recnd |
⊢ ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐴 ≠ 0 ) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ∧ ( 𝑅 ∈ ℝ+ ∧ 0 ≤ 𝐷 ) ∧ ( 𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ ) ) → 𝐴 ∈ ℂ ) |
23 |
|
rpre |
⊢ ( 𝑅 ∈ ℝ+ → 𝑅 ∈ ℝ ) |
24 |
23
|
adantr |
⊢ ( ( 𝑅 ∈ ℝ+ ∧ 0 ≤ 𝐷 ) → 𝑅 ∈ ℝ ) |
25 |
24
|
adantl |
⊢ ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐴 ≠ 0 ) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ∧ ( 𝑅 ∈ ℝ+ ∧ 0 ≤ 𝐷 ) ) → 𝑅 ∈ ℝ ) |
26 |
25
|
resqcld |
⊢ ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐴 ≠ 0 ) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ∧ ( 𝑅 ∈ ℝ+ ∧ 0 ≤ 𝐷 ) ) → ( 𝑅 ↑ 2 ) ∈ ℝ ) |
27 |
|
simp1l |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐴 ≠ 0 ) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) → 𝐴 ∈ ℝ ) |
28 |
|
simp2 |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐴 ≠ 0 ) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) → 𝐵 ∈ ℝ ) |
29 |
1
|
resum2sqcl |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → 𝑄 ∈ ℝ ) |
30 |
27 28 29
|
syl2anc |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐴 ≠ 0 ) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) → 𝑄 ∈ ℝ ) |
31 |
30
|
adantr |
⊢ ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐴 ≠ 0 ) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ∧ ( 𝑅 ∈ ℝ+ ∧ 0 ≤ 𝐷 ) ) → 𝑄 ∈ ℝ ) |
32 |
26 31
|
remulcld |
⊢ ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐴 ≠ 0 ) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ∧ ( 𝑅 ∈ ℝ+ ∧ 0 ≤ 𝐷 ) ) → ( ( 𝑅 ↑ 2 ) · 𝑄 ) ∈ ℝ ) |
33 |
|
simpl3 |
⊢ ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐴 ≠ 0 ) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ∧ ( 𝑅 ∈ ℝ+ ∧ 0 ≤ 𝐷 ) ) → 𝐶 ∈ ℝ ) |
34 |
33
|
resqcld |
⊢ ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐴 ≠ 0 ) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ∧ ( 𝑅 ∈ ℝ+ ∧ 0 ≤ 𝐷 ) ) → ( 𝐶 ↑ 2 ) ∈ ℝ ) |
35 |
32 34
|
resubcld |
⊢ ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐴 ≠ 0 ) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ∧ ( 𝑅 ∈ ℝ+ ∧ 0 ≤ 𝐷 ) ) → ( ( ( 𝑅 ↑ 2 ) · 𝑄 ) − ( 𝐶 ↑ 2 ) ) ∈ ℝ ) |
36 |
2 35
|
eqeltrid |
⊢ ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐴 ≠ 0 ) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ∧ ( 𝑅 ∈ ℝ+ ∧ 0 ≤ 𝐷 ) ) → 𝐷 ∈ ℝ ) |
37 |
36
|
3adant3 |
⊢ ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐴 ≠ 0 ) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ∧ ( 𝑅 ∈ ℝ+ ∧ 0 ≤ 𝐷 ) ∧ ( 𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ ) ) → 𝐷 ∈ ℝ ) |
38 |
37
|
recnd |
⊢ ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐴 ≠ 0 ) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ∧ ( 𝑅 ∈ ℝ+ ∧ 0 ≤ 𝐷 ) ∧ ( 𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ ) ) → 𝐷 ∈ ℂ ) |
39 |
38
|
sqrtcld |
⊢ ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐴 ≠ 0 ) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ∧ ( 𝑅 ∈ ℝ+ ∧ 0 ≤ 𝐷 ) ∧ ( 𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ ) ) → ( √ ‘ 𝐷 ) ∈ ℂ ) |
40 |
22 39
|
mulcld |
⊢ ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐴 ≠ 0 ) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ∧ ( 𝑅 ∈ ℝ+ ∧ 0 ≤ 𝐷 ) ∧ ( 𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ ) ) → ( 𝐴 · ( √ ‘ 𝐷 ) ) ∈ ℂ ) |
41 |
20 40
|
subcld |
⊢ ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐴 ≠ 0 ) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ∧ ( 𝑅 ∈ ℝ+ ∧ 0 ≤ 𝐷 ) ∧ ( 𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ ) ) → ( ( 𝐵 · 𝐶 ) − ( 𝐴 · ( √ ‘ 𝐷 ) ) ) ∈ ℂ ) |
42 |
30
|
3ad2ant1 |
⊢ ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐴 ≠ 0 ) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ∧ ( 𝑅 ∈ ℝ+ ∧ 0 ≤ 𝐷 ) ∧ ( 𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ ) ) → 𝑄 ∈ ℝ ) |
43 |
42
|
recnd |
⊢ ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐴 ≠ 0 ) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ∧ ( 𝑅 ∈ ℝ+ ∧ 0 ≤ 𝐷 ) ∧ ( 𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ ) ) → 𝑄 ∈ ℂ ) |
44 |
1
|
resum2sqgt0 |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐴 ≠ 0 ) ∧ 𝐵 ∈ ℝ ) → 0 < 𝑄 ) |
45 |
44
|
3adant3 |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐴 ≠ 0 ) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) → 0 < 𝑄 ) |
46 |
45
|
gt0ne0d |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐴 ≠ 0 ) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) → 𝑄 ≠ 0 ) |
47 |
46
|
3ad2ant1 |
⊢ ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐴 ≠ 0 ) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ∧ ( 𝑅 ∈ ℝ+ ∧ 0 ≤ 𝐷 ) ∧ ( 𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ ) ) → 𝑄 ≠ 0 ) |
48 |
17 41 43 47
|
divassd |
⊢ ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐴 ≠ 0 ) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ∧ ( 𝑅 ∈ ℝ+ ∧ 0 ≤ 𝐷 ) ∧ ( 𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ ) ) → ( ( 𝐵 · ( ( 𝐵 · 𝐶 ) − ( 𝐴 · ( √ ‘ 𝐷 ) ) ) ) / 𝑄 ) = ( 𝐵 · ( ( ( 𝐵 · 𝐶 ) − ( 𝐴 · ( √ ‘ 𝐷 ) ) ) / 𝑄 ) ) ) |
49 |
48
|
eqcomd |
⊢ ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐴 ≠ 0 ) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ∧ ( 𝑅 ∈ ℝ+ ∧ 0 ≤ 𝐷 ) ∧ ( 𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ ) ) → ( 𝐵 · ( ( ( 𝐵 · 𝐶 ) − ( 𝐴 · ( √ ‘ 𝐷 ) ) ) / 𝑄 ) ) = ( ( 𝐵 · ( ( 𝐵 · 𝐶 ) − ( 𝐴 · ( √ ‘ 𝐷 ) ) ) ) / 𝑄 ) ) |
50 |
49
|
oveq2d |
⊢ ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐴 ≠ 0 ) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ∧ ( 𝑅 ∈ ℝ+ ∧ 0 ≤ 𝐷 ) ∧ ( 𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ ) ) → ( ( 𝐴 · 𝑋 ) + ( 𝐵 · ( ( ( 𝐵 · 𝐶 ) − ( 𝐴 · ( √ ‘ 𝐷 ) ) ) / 𝑄 ) ) ) = ( ( 𝐴 · 𝑋 ) + ( ( 𝐵 · ( ( 𝐵 · 𝐶 ) − ( 𝐴 · ( √ ‘ 𝐷 ) ) ) ) / 𝑄 ) ) ) |
51 |
19 43 47
|
divcan3d |
⊢ ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐴 ≠ 0 ) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ∧ ( 𝑅 ∈ ℝ+ ∧ 0 ≤ 𝐷 ) ∧ ( 𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ ) ) → ( ( 𝑄 · 𝐶 ) / 𝑄 ) = 𝐶 ) |
52 |
51
|
eqcomd |
⊢ ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐴 ≠ 0 ) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ∧ ( 𝑅 ∈ ℝ+ ∧ 0 ≤ 𝐷 ) ∧ ( 𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ ) ) → 𝐶 = ( ( 𝑄 · 𝐶 ) / 𝑄 ) ) |
53 |
50 52
|
eqeq12d |
⊢ ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐴 ≠ 0 ) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ∧ ( 𝑅 ∈ ℝ+ ∧ 0 ≤ 𝐷 ) ∧ ( 𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ ) ) → ( ( ( 𝐴 · 𝑋 ) + ( 𝐵 · ( ( ( 𝐵 · 𝐶 ) − ( 𝐴 · ( √ ‘ 𝐷 ) ) ) / 𝑄 ) ) ) = 𝐶 ↔ ( ( 𝐴 · 𝑋 ) + ( ( 𝐵 · ( ( 𝐵 · 𝐶 ) − ( 𝐴 · ( √ ‘ 𝐷 ) ) ) ) / 𝑄 ) ) = ( ( 𝑄 · 𝐶 ) / 𝑄 ) ) ) |
54 |
43 19
|
mulcld |
⊢ ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐴 ≠ 0 ) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ∧ ( 𝑅 ∈ ℝ+ ∧ 0 ≤ 𝐷 ) ∧ ( 𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ ) ) → ( 𝑄 · 𝐶 ) ∈ ℂ ) |
55 |
17 41
|
mulcld |
⊢ ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐴 ≠ 0 ) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ∧ ( 𝑅 ∈ ℝ+ ∧ 0 ≤ 𝐷 ) ∧ ( 𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ ) ) → ( 𝐵 · ( ( 𝐵 · 𝐶 ) − ( 𝐴 · ( √ ‘ 𝐷 ) ) ) ) ∈ ℂ ) |
56 |
54 55 43 47
|
divsubdird |
⊢ ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐴 ≠ 0 ) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ∧ ( 𝑅 ∈ ℝ+ ∧ 0 ≤ 𝐷 ) ∧ ( 𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ ) ) → ( ( ( 𝑄 · 𝐶 ) − ( 𝐵 · ( ( 𝐵 · 𝐶 ) − ( 𝐴 · ( √ ‘ 𝐷 ) ) ) ) ) / 𝑄 ) = ( ( ( 𝑄 · 𝐶 ) / 𝑄 ) − ( ( 𝐵 · ( ( 𝐵 · 𝐶 ) − ( 𝐴 · ( √ ‘ 𝐷 ) ) ) ) / 𝑄 ) ) ) |
57 |
56
|
eqcomd |
⊢ ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐴 ≠ 0 ) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ∧ ( 𝑅 ∈ ℝ+ ∧ 0 ≤ 𝐷 ) ∧ ( 𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ ) ) → ( ( ( 𝑄 · 𝐶 ) / 𝑄 ) − ( ( 𝐵 · ( ( 𝐵 · 𝐶 ) − ( 𝐴 · ( √ ‘ 𝐷 ) ) ) ) / 𝑄 ) ) = ( ( ( 𝑄 · 𝐶 ) − ( 𝐵 · ( ( 𝐵 · 𝐶 ) − ( 𝐴 · ( √ ‘ 𝐷 ) ) ) ) ) / 𝑄 ) ) |
58 |
57
|
eqeq1d |
⊢ ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐴 ≠ 0 ) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ∧ ( 𝑅 ∈ ℝ+ ∧ 0 ≤ 𝐷 ) ∧ ( 𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ ) ) → ( ( ( ( 𝑄 · 𝐶 ) / 𝑄 ) − ( ( 𝐵 · ( ( 𝐵 · 𝐶 ) − ( 𝐴 · ( √ ‘ 𝐷 ) ) ) ) / 𝑄 ) ) = ( 𝐴 · 𝑋 ) ↔ ( ( ( 𝑄 · 𝐶 ) − ( 𝐵 · ( ( 𝐵 · 𝐶 ) − ( 𝐴 · ( √ ‘ 𝐷 ) ) ) ) ) / 𝑄 ) = ( 𝐴 · 𝑋 ) ) ) |
59 |
54 43 47
|
divcld |
⊢ ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐴 ≠ 0 ) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ∧ ( 𝑅 ∈ ℝ+ ∧ 0 ≤ 𝐷 ) ∧ ( 𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ ) ) → ( ( 𝑄 · 𝐶 ) / 𝑄 ) ∈ ℂ ) |
60 |
55 43 47
|
divcld |
⊢ ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐴 ≠ 0 ) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ∧ ( 𝑅 ∈ ℝ+ ∧ 0 ≤ 𝐷 ) ∧ ( 𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ ) ) → ( ( 𝐵 · ( ( 𝐵 · 𝐶 ) − ( 𝐴 · ( √ ‘ 𝐷 ) ) ) ) / 𝑄 ) ∈ ℂ ) |
61 |
|
simp3l |
⊢ ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐴 ≠ 0 ) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ∧ ( 𝑅 ∈ ℝ+ ∧ 0 ≤ 𝐷 ) ∧ ( 𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ ) ) → 𝑋 ∈ ℝ ) |
62 |
61
|
recnd |
⊢ ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐴 ≠ 0 ) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ∧ ( 𝑅 ∈ ℝ+ ∧ 0 ≤ 𝐷 ) ∧ ( 𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ ) ) → 𝑋 ∈ ℂ ) |
63 |
22 62
|
mulcld |
⊢ ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐴 ≠ 0 ) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ∧ ( 𝑅 ∈ ℝ+ ∧ 0 ≤ 𝐷 ) ∧ ( 𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ ) ) → ( 𝐴 · 𝑋 ) ∈ ℂ ) |
64 |
59 60 63
|
subadd2d |
⊢ ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐴 ≠ 0 ) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ∧ ( 𝑅 ∈ ℝ+ ∧ 0 ≤ 𝐷 ) ∧ ( 𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ ) ) → ( ( ( ( 𝑄 · 𝐶 ) / 𝑄 ) − ( ( 𝐵 · ( ( 𝐵 · 𝐶 ) − ( 𝐴 · ( √ ‘ 𝐷 ) ) ) ) / 𝑄 ) ) = ( 𝐴 · 𝑋 ) ↔ ( ( 𝐴 · 𝑋 ) + ( ( 𝐵 · ( ( 𝐵 · 𝐶 ) − ( 𝐴 · ( √ ‘ 𝐷 ) ) ) ) / 𝑄 ) ) = ( ( 𝑄 · 𝐶 ) / 𝑄 ) ) ) |
65 |
|
eqcom |
⊢ ( ( ( ( ( 𝑄 · 𝐶 ) − ( 𝐵 · ( ( 𝐵 · 𝐶 ) − ( 𝐴 · ( √ ‘ 𝐷 ) ) ) ) ) / 𝑄 ) / 𝐴 ) = 𝑋 ↔ 𝑋 = ( ( ( ( 𝑄 · 𝐶 ) − ( 𝐵 · ( ( 𝐵 · 𝐶 ) − ( 𝐴 · ( √ ‘ 𝐷 ) ) ) ) ) / 𝑄 ) / 𝐴 ) ) |
66 |
65
|
a1i |
⊢ ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐴 ≠ 0 ) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ∧ ( 𝑅 ∈ ℝ+ ∧ 0 ≤ 𝐷 ) ∧ ( 𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ ) ) → ( ( ( ( ( 𝑄 · 𝐶 ) − ( 𝐵 · ( ( 𝐵 · 𝐶 ) − ( 𝐴 · ( √ ‘ 𝐷 ) ) ) ) ) / 𝑄 ) / 𝐴 ) = 𝑋 ↔ 𝑋 = ( ( ( ( 𝑄 · 𝐶 ) − ( 𝐵 · ( ( 𝐵 · 𝐶 ) − ( 𝐴 · ( √ ‘ 𝐷 ) ) ) ) ) / 𝑄 ) / 𝐴 ) ) ) |
67 |
54 55
|
subcld |
⊢ ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐴 ≠ 0 ) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ∧ ( 𝑅 ∈ ℝ+ ∧ 0 ≤ 𝐷 ) ∧ ( 𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ ) ) → ( ( 𝑄 · 𝐶 ) − ( 𝐵 · ( ( 𝐵 · 𝐶 ) − ( 𝐴 · ( √ ‘ 𝐷 ) ) ) ) ) ∈ ℂ ) |
68 |
67 43 47
|
divcld |
⊢ ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐴 ≠ 0 ) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ∧ ( 𝑅 ∈ ℝ+ ∧ 0 ≤ 𝐷 ) ∧ ( 𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ ) ) → ( ( ( 𝑄 · 𝐶 ) − ( 𝐵 · ( ( 𝐵 · 𝐶 ) − ( 𝐴 · ( √ ‘ 𝐷 ) ) ) ) ) / 𝑄 ) ∈ ℂ ) |
69 |
|
simp11r |
⊢ ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐴 ≠ 0 ) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ∧ ( 𝑅 ∈ ℝ+ ∧ 0 ≤ 𝐷 ) ∧ ( 𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ ) ) → 𝐴 ≠ 0 ) |
70 |
68 62 22 69
|
divmul2d |
⊢ ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐴 ≠ 0 ) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ∧ ( 𝑅 ∈ ℝ+ ∧ 0 ≤ 𝐷 ) ∧ ( 𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ ) ) → ( ( ( ( ( 𝑄 · 𝐶 ) − ( 𝐵 · ( ( 𝐵 · 𝐶 ) − ( 𝐴 · ( √ ‘ 𝐷 ) ) ) ) ) / 𝑄 ) / 𝐴 ) = 𝑋 ↔ ( ( ( 𝑄 · 𝐶 ) − ( 𝐵 · ( ( 𝐵 · 𝐶 ) − ( 𝐴 · ( √ ‘ 𝐷 ) ) ) ) ) / 𝑄 ) = ( 𝐴 · 𝑋 ) ) ) |
71 |
67 43 22 47 69
|
divdiv1d |
⊢ ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐴 ≠ 0 ) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ∧ ( 𝑅 ∈ ℝ+ ∧ 0 ≤ 𝐷 ) ∧ ( 𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ ) ) → ( ( ( ( 𝑄 · 𝐶 ) − ( 𝐵 · ( ( 𝐵 · 𝐶 ) − ( 𝐴 · ( √ ‘ 𝐷 ) ) ) ) ) / 𝑄 ) / 𝐴 ) = ( ( ( 𝑄 · 𝐶 ) − ( 𝐵 · ( ( 𝐵 · 𝐶 ) − ( 𝐴 · ( √ ‘ 𝐷 ) ) ) ) ) / ( 𝑄 · 𝐴 ) ) ) |
72 |
71
|
eqeq2d |
⊢ ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐴 ≠ 0 ) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ∧ ( 𝑅 ∈ ℝ+ ∧ 0 ≤ 𝐷 ) ∧ ( 𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ ) ) → ( 𝑋 = ( ( ( ( 𝑄 · 𝐶 ) − ( 𝐵 · ( ( 𝐵 · 𝐶 ) − ( 𝐴 · ( √ ‘ 𝐷 ) ) ) ) ) / 𝑄 ) / 𝐴 ) ↔ 𝑋 = ( ( ( 𝑄 · 𝐶 ) − ( 𝐵 · ( ( 𝐵 · 𝐶 ) − ( 𝐴 · ( √ ‘ 𝐷 ) ) ) ) ) / ( 𝑄 · 𝐴 ) ) ) ) |
73 |
66 70 72
|
3bitr3d |
⊢ ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐴 ≠ 0 ) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ∧ ( 𝑅 ∈ ℝ+ ∧ 0 ≤ 𝐷 ) ∧ ( 𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ ) ) → ( ( ( ( 𝑄 · 𝐶 ) − ( 𝐵 · ( ( 𝐵 · 𝐶 ) − ( 𝐴 · ( √ ‘ 𝐷 ) ) ) ) ) / 𝑄 ) = ( 𝐴 · 𝑋 ) ↔ 𝑋 = ( ( ( 𝑄 · 𝐶 ) − ( 𝐵 · ( ( 𝐵 · 𝐶 ) − ( 𝐴 · ( √ ‘ 𝐷 ) ) ) ) ) / ( 𝑄 · 𝐴 ) ) ) ) |
74 |
58 64 73
|
3bitr3d |
⊢ ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐴 ≠ 0 ) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ∧ ( 𝑅 ∈ ℝ+ ∧ 0 ≤ 𝐷 ) ∧ ( 𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ ) ) → ( ( ( 𝐴 · 𝑋 ) + ( ( 𝐵 · ( ( 𝐵 · 𝐶 ) − ( 𝐴 · ( √ ‘ 𝐷 ) ) ) ) / 𝑄 ) ) = ( ( 𝑄 · 𝐶 ) / 𝑄 ) ↔ 𝑋 = ( ( ( 𝑄 · 𝐶 ) − ( 𝐵 · ( ( 𝐵 · 𝐶 ) − ( 𝐴 · ( √ ‘ 𝐷 ) ) ) ) ) / ( 𝑄 · 𝐴 ) ) ) ) |
75 |
53 74
|
bitrd |
⊢ ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐴 ≠ 0 ) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ∧ ( 𝑅 ∈ ℝ+ ∧ 0 ≤ 𝐷 ) ∧ ( 𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ ) ) → ( ( ( 𝐴 · 𝑋 ) + ( 𝐵 · ( ( ( 𝐵 · 𝐶 ) − ( 𝐴 · ( √ ‘ 𝐷 ) ) ) / 𝑄 ) ) ) = 𝐶 ↔ 𝑋 = ( ( ( 𝑄 · 𝐶 ) − ( 𝐵 · ( ( 𝐵 · 𝐶 ) − ( 𝐴 · ( √ ‘ 𝐷 ) ) ) ) ) / ( 𝑄 · 𝐴 ) ) ) ) |
76 |
15 75
|
sylan9bbr |
⊢ ( ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐴 ≠ 0 ) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ∧ ( 𝑅 ∈ ℝ+ ∧ 0 ≤ 𝐷 ) ∧ ( 𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ ) ) ∧ 𝑌 = ( ( ( 𝐵 · 𝐶 ) − ( 𝐴 · ( √ ‘ 𝐷 ) ) ) / 𝑄 ) ) → ( ( ( 𝐴 · 𝑋 ) + ( 𝐵 · 𝑌 ) ) = 𝐶 ↔ 𝑋 = ( ( ( 𝑄 · 𝐶 ) − ( 𝐵 · ( ( 𝐵 · 𝐶 ) − ( 𝐴 · ( √ ‘ 𝐷 ) ) ) ) ) / ( 𝑄 · 𝐴 ) ) ) ) |
77 |
1
|
oveq1i |
⊢ ( 𝑄 · 𝐶 ) = ( ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) · 𝐶 ) |
78 |
27
|
recnd |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐴 ≠ 0 ) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) → 𝐴 ∈ ℂ ) |
79 |
78
|
sqcld |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐴 ≠ 0 ) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) → ( 𝐴 ↑ 2 ) ∈ ℂ ) |
80 |
28
|
recnd |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐴 ≠ 0 ) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) → 𝐵 ∈ ℂ ) |
81 |
80
|
sqcld |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐴 ≠ 0 ) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) → ( 𝐵 ↑ 2 ) ∈ ℂ ) |
82 |
|
simp3 |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐴 ≠ 0 ) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) → 𝐶 ∈ ℝ ) |
83 |
82
|
recnd |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐴 ≠ 0 ) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) → 𝐶 ∈ ℂ ) |
84 |
79 81 83
|
adddird |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐴 ≠ 0 ) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) → ( ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) · 𝐶 ) = ( ( ( 𝐴 ↑ 2 ) · 𝐶 ) + ( ( 𝐵 ↑ 2 ) · 𝐶 ) ) ) |
85 |
77 84
|
syl5eq |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐴 ≠ 0 ) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) → ( 𝑄 · 𝐶 ) = ( ( ( 𝐴 ↑ 2 ) · 𝐶 ) + ( ( 𝐵 ↑ 2 ) · 𝐶 ) ) ) |
86 |
85
|
adantr |
⊢ ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐴 ≠ 0 ) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ∧ ( 𝑅 ∈ ℝ+ ∧ 0 ≤ 𝐷 ) ) → ( 𝑄 · 𝐶 ) = ( ( ( 𝐴 ↑ 2 ) · 𝐶 ) + ( ( 𝐵 ↑ 2 ) · 𝐶 ) ) ) |
87 |
80
|
adantr |
⊢ ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐴 ≠ 0 ) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ∧ ( 𝑅 ∈ ℝ+ ∧ 0 ≤ 𝐷 ) ) → 𝐵 ∈ ℂ ) |
88 |
33
|
recnd |
⊢ ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐴 ≠ 0 ) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ∧ ( 𝑅 ∈ ℝ+ ∧ 0 ≤ 𝐷 ) ) → 𝐶 ∈ ℂ ) |
89 |
87 88
|
mulcld |
⊢ ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐴 ≠ 0 ) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ∧ ( 𝑅 ∈ ℝ+ ∧ 0 ≤ 𝐷 ) ) → ( 𝐵 · 𝐶 ) ∈ ℂ ) |
90 |
78
|
adantr |
⊢ ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐴 ≠ 0 ) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ∧ ( 𝑅 ∈ ℝ+ ∧ 0 ≤ 𝐷 ) ) → 𝐴 ∈ ℂ ) |
91 |
36
|
recnd |
⊢ ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐴 ≠ 0 ) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ∧ ( 𝑅 ∈ ℝ+ ∧ 0 ≤ 𝐷 ) ) → 𝐷 ∈ ℂ ) |
92 |
91
|
sqrtcld |
⊢ ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐴 ≠ 0 ) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ∧ ( 𝑅 ∈ ℝ+ ∧ 0 ≤ 𝐷 ) ) → ( √ ‘ 𝐷 ) ∈ ℂ ) |
93 |
90 92
|
mulcld |
⊢ ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐴 ≠ 0 ) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ∧ ( 𝑅 ∈ ℝ+ ∧ 0 ≤ 𝐷 ) ) → ( 𝐴 · ( √ ‘ 𝐷 ) ) ∈ ℂ ) |
94 |
87 89 93
|
subdid |
⊢ ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐴 ≠ 0 ) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ∧ ( 𝑅 ∈ ℝ+ ∧ 0 ≤ 𝐷 ) ) → ( 𝐵 · ( ( 𝐵 · 𝐶 ) − ( 𝐴 · ( √ ‘ 𝐷 ) ) ) ) = ( ( 𝐵 · ( 𝐵 · 𝐶 ) ) − ( 𝐵 · ( 𝐴 · ( √ ‘ 𝐷 ) ) ) ) ) |
95 |
80 80 83
|
mulassd |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐴 ≠ 0 ) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) → ( ( 𝐵 · 𝐵 ) · 𝐶 ) = ( 𝐵 · ( 𝐵 · 𝐶 ) ) ) |
96 |
|
recn |
⊢ ( 𝐵 ∈ ℝ → 𝐵 ∈ ℂ ) |
97 |
96
|
sqvald |
⊢ ( 𝐵 ∈ ℝ → ( 𝐵 ↑ 2 ) = ( 𝐵 · 𝐵 ) ) |
98 |
97
|
3ad2ant2 |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐴 ≠ 0 ) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) → ( 𝐵 ↑ 2 ) = ( 𝐵 · 𝐵 ) ) |
99 |
98
|
eqcomd |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐴 ≠ 0 ) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) → ( 𝐵 · 𝐵 ) = ( 𝐵 ↑ 2 ) ) |
100 |
99
|
oveq1d |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐴 ≠ 0 ) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) → ( ( 𝐵 · 𝐵 ) · 𝐶 ) = ( ( 𝐵 ↑ 2 ) · 𝐶 ) ) |
101 |
95 100
|
eqtr3d |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐴 ≠ 0 ) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) → ( 𝐵 · ( 𝐵 · 𝐶 ) ) = ( ( 𝐵 ↑ 2 ) · 𝐶 ) ) |
102 |
101
|
adantr |
⊢ ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐴 ≠ 0 ) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ∧ ( 𝑅 ∈ ℝ+ ∧ 0 ≤ 𝐷 ) ) → ( 𝐵 · ( 𝐵 · 𝐶 ) ) = ( ( 𝐵 ↑ 2 ) · 𝐶 ) ) |
103 |
87 90 92
|
mul12d |
⊢ ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐴 ≠ 0 ) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ∧ ( 𝑅 ∈ ℝ+ ∧ 0 ≤ 𝐷 ) ) → ( 𝐵 · ( 𝐴 · ( √ ‘ 𝐷 ) ) ) = ( 𝐴 · ( 𝐵 · ( √ ‘ 𝐷 ) ) ) ) |
104 |
102 103
|
oveq12d |
⊢ ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐴 ≠ 0 ) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ∧ ( 𝑅 ∈ ℝ+ ∧ 0 ≤ 𝐷 ) ) → ( ( 𝐵 · ( 𝐵 · 𝐶 ) ) − ( 𝐵 · ( 𝐴 · ( √ ‘ 𝐷 ) ) ) ) = ( ( ( 𝐵 ↑ 2 ) · 𝐶 ) − ( 𝐴 · ( 𝐵 · ( √ ‘ 𝐷 ) ) ) ) ) |
105 |
94 104
|
eqtrd |
⊢ ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐴 ≠ 0 ) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ∧ ( 𝑅 ∈ ℝ+ ∧ 0 ≤ 𝐷 ) ) → ( 𝐵 · ( ( 𝐵 · 𝐶 ) − ( 𝐴 · ( √ ‘ 𝐷 ) ) ) ) = ( ( ( 𝐵 ↑ 2 ) · 𝐶 ) − ( 𝐴 · ( 𝐵 · ( √ ‘ 𝐷 ) ) ) ) ) |
106 |
86 105
|
oveq12d |
⊢ ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐴 ≠ 0 ) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ∧ ( 𝑅 ∈ ℝ+ ∧ 0 ≤ 𝐷 ) ) → ( ( 𝑄 · 𝐶 ) − ( 𝐵 · ( ( 𝐵 · 𝐶 ) − ( 𝐴 · ( √ ‘ 𝐷 ) ) ) ) ) = ( ( ( ( 𝐴 ↑ 2 ) · 𝐶 ) + ( ( 𝐵 ↑ 2 ) · 𝐶 ) ) − ( ( ( 𝐵 ↑ 2 ) · 𝐶 ) − ( 𝐴 · ( 𝐵 · ( √ ‘ 𝐷 ) ) ) ) ) ) |
107 |
90
|
sqcld |
⊢ ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐴 ≠ 0 ) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ∧ ( 𝑅 ∈ ℝ+ ∧ 0 ≤ 𝐷 ) ) → ( 𝐴 ↑ 2 ) ∈ ℂ ) |
108 |
107 88
|
mulcld |
⊢ ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐴 ≠ 0 ) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ∧ ( 𝑅 ∈ ℝ+ ∧ 0 ≤ 𝐷 ) ) → ( ( 𝐴 ↑ 2 ) · 𝐶 ) ∈ ℂ ) |
109 |
87
|
sqcld |
⊢ ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐴 ≠ 0 ) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ∧ ( 𝑅 ∈ ℝ+ ∧ 0 ≤ 𝐷 ) ) → ( 𝐵 ↑ 2 ) ∈ ℂ ) |
110 |
109 88
|
mulcld |
⊢ ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐴 ≠ 0 ) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ∧ ( 𝑅 ∈ ℝ+ ∧ 0 ≤ 𝐷 ) ) → ( ( 𝐵 ↑ 2 ) · 𝐶 ) ∈ ℂ ) |
111 |
108 110
|
addcomd |
⊢ ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐴 ≠ 0 ) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ∧ ( 𝑅 ∈ ℝ+ ∧ 0 ≤ 𝐷 ) ) → ( ( ( 𝐴 ↑ 2 ) · 𝐶 ) + ( ( 𝐵 ↑ 2 ) · 𝐶 ) ) = ( ( ( 𝐵 ↑ 2 ) · 𝐶 ) + ( ( 𝐴 ↑ 2 ) · 𝐶 ) ) ) |
112 |
111
|
oveq1d |
⊢ ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐴 ≠ 0 ) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ∧ ( 𝑅 ∈ ℝ+ ∧ 0 ≤ 𝐷 ) ) → ( ( ( ( 𝐴 ↑ 2 ) · 𝐶 ) + ( ( 𝐵 ↑ 2 ) · 𝐶 ) ) − ( ( ( 𝐵 ↑ 2 ) · 𝐶 ) − ( 𝐴 · ( 𝐵 · ( √ ‘ 𝐷 ) ) ) ) ) = ( ( ( ( 𝐵 ↑ 2 ) · 𝐶 ) + ( ( 𝐴 ↑ 2 ) · 𝐶 ) ) − ( ( ( 𝐵 ↑ 2 ) · 𝐶 ) − ( 𝐴 · ( 𝐵 · ( √ ‘ 𝐷 ) ) ) ) ) ) |
113 |
87 92
|
mulcld |
⊢ ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐴 ≠ 0 ) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ∧ ( 𝑅 ∈ ℝ+ ∧ 0 ≤ 𝐷 ) ) → ( 𝐵 · ( √ ‘ 𝐷 ) ) ∈ ℂ ) |
114 |
90 113
|
mulcld |
⊢ ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐴 ≠ 0 ) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ∧ ( 𝑅 ∈ ℝ+ ∧ 0 ≤ 𝐷 ) ) → ( 𝐴 · ( 𝐵 · ( √ ‘ 𝐷 ) ) ) ∈ ℂ ) |
115 |
110 108 114
|
pnncand |
⊢ ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐴 ≠ 0 ) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ∧ ( 𝑅 ∈ ℝ+ ∧ 0 ≤ 𝐷 ) ) → ( ( ( ( 𝐵 ↑ 2 ) · 𝐶 ) + ( ( 𝐴 ↑ 2 ) · 𝐶 ) ) − ( ( ( 𝐵 ↑ 2 ) · 𝐶 ) − ( 𝐴 · ( 𝐵 · ( √ ‘ 𝐷 ) ) ) ) ) = ( ( ( 𝐴 ↑ 2 ) · 𝐶 ) + ( 𝐴 · ( 𝐵 · ( √ ‘ 𝐷 ) ) ) ) ) |
116 |
106 112 115
|
3eqtrd |
⊢ ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐴 ≠ 0 ) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ∧ ( 𝑅 ∈ ℝ+ ∧ 0 ≤ 𝐷 ) ) → ( ( 𝑄 · 𝐶 ) − ( 𝐵 · ( ( 𝐵 · 𝐶 ) − ( 𝐴 · ( √ ‘ 𝐷 ) ) ) ) ) = ( ( ( 𝐴 ↑ 2 ) · 𝐶 ) + ( 𝐴 · ( 𝐵 · ( √ ‘ 𝐷 ) ) ) ) ) |
117 |
116
|
oveq1d |
⊢ ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐴 ≠ 0 ) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ∧ ( 𝑅 ∈ ℝ+ ∧ 0 ≤ 𝐷 ) ) → ( ( ( 𝑄 · 𝐶 ) − ( 𝐵 · ( ( 𝐵 · 𝐶 ) − ( 𝐴 · ( √ ‘ 𝐷 ) ) ) ) ) / ( 𝑄 · 𝐴 ) ) = ( ( ( ( 𝐴 ↑ 2 ) · 𝐶 ) + ( 𝐴 · ( 𝐵 · ( √ ‘ 𝐷 ) ) ) ) / ( 𝑄 · 𝐴 ) ) ) |
118 |
78
|
sqvald |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐴 ≠ 0 ) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) → ( 𝐴 ↑ 2 ) = ( 𝐴 · 𝐴 ) ) |
119 |
118
|
oveq1d |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐴 ≠ 0 ) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) → ( ( 𝐴 ↑ 2 ) · 𝐶 ) = ( ( 𝐴 · 𝐴 ) · 𝐶 ) ) |
120 |
78 78 83
|
mulassd |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐴 ≠ 0 ) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) → ( ( 𝐴 · 𝐴 ) · 𝐶 ) = ( 𝐴 · ( 𝐴 · 𝐶 ) ) ) |
121 |
119 120
|
eqtrd |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐴 ≠ 0 ) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) → ( ( 𝐴 ↑ 2 ) · 𝐶 ) = ( 𝐴 · ( 𝐴 · 𝐶 ) ) ) |
122 |
121
|
adantr |
⊢ ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐴 ≠ 0 ) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ∧ ( 𝑅 ∈ ℝ+ ∧ 0 ≤ 𝐷 ) ) → ( ( 𝐴 ↑ 2 ) · 𝐶 ) = ( 𝐴 · ( 𝐴 · 𝐶 ) ) ) |
123 |
122
|
oveq1d |
⊢ ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐴 ≠ 0 ) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ∧ ( 𝑅 ∈ ℝ+ ∧ 0 ≤ 𝐷 ) ) → ( ( ( 𝐴 ↑ 2 ) · 𝐶 ) + ( 𝐴 · ( 𝐵 · ( √ ‘ 𝐷 ) ) ) ) = ( ( 𝐴 · ( 𝐴 · 𝐶 ) ) + ( 𝐴 · ( 𝐵 · ( √ ‘ 𝐷 ) ) ) ) ) |
124 |
31
|
recnd |
⊢ ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐴 ≠ 0 ) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ∧ ( 𝑅 ∈ ℝ+ ∧ 0 ≤ 𝐷 ) ) → 𝑄 ∈ ℂ ) |
125 |
124 90
|
mulcomd |
⊢ ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐴 ≠ 0 ) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ∧ ( 𝑅 ∈ ℝ+ ∧ 0 ≤ 𝐷 ) ) → ( 𝑄 · 𝐴 ) = ( 𝐴 · 𝑄 ) ) |
126 |
123 125
|
oveq12d |
⊢ ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐴 ≠ 0 ) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ∧ ( 𝑅 ∈ ℝ+ ∧ 0 ≤ 𝐷 ) ) → ( ( ( ( 𝐴 ↑ 2 ) · 𝐶 ) + ( 𝐴 · ( 𝐵 · ( √ ‘ 𝐷 ) ) ) ) / ( 𝑄 · 𝐴 ) ) = ( ( ( 𝐴 · ( 𝐴 · 𝐶 ) ) + ( 𝐴 · ( 𝐵 · ( √ ‘ 𝐷 ) ) ) ) / ( 𝐴 · 𝑄 ) ) ) |
127 |
90 88
|
mulcld |
⊢ ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐴 ≠ 0 ) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ∧ ( 𝑅 ∈ ℝ+ ∧ 0 ≤ 𝐷 ) ) → ( 𝐴 · 𝐶 ) ∈ ℂ ) |
128 |
90 127 113
|
adddid |
⊢ ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐴 ≠ 0 ) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ∧ ( 𝑅 ∈ ℝ+ ∧ 0 ≤ 𝐷 ) ) → ( 𝐴 · ( ( 𝐴 · 𝐶 ) + ( 𝐵 · ( √ ‘ 𝐷 ) ) ) ) = ( ( 𝐴 · ( 𝐴 · 𝐶 ) ) + ( 𝐴 · ( 𝐵 · ( √ ‘ 𝐷 ) ) ) ) ) |
129 |
128
|
eqcomd |
⊢ ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐴 ≠ 0 ) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ∧ ( 𝑅 ∈ ℝ+ ∧ 0 ≤ 𝐷 ) ) → ( ( 𝐴 · ( 𝐴 · 𝐶 ) ) + ( 𝐴 · ( 𝐵 · ( √ ‘ 𝐷 ) ) ) ) = ( 𝐴 · ( ( 𝐴 · 𝐶 ) + ( 𝐵 · ( √ ‘ 𝐷 ) ) ) ) ) |
130 |
129
|
oveq1d |
⊢ ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐴 ≠ 0 ) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ∧ ( 𝑅 ∈ ℝ+ ∧ 0 ≤ 𝐷 ) ) → ( ( ( 𝐴 · ( 𝐴 · 𝐶 ) ) + ( 𝐴 · ( 𝐵 · ( √ ‘ 𝐷 ) ) ) ) / ( 𝐴 · 𝑄 ) ) = ( ( 𝐴 · ( ( 𝐴 · 𝐶 ) + ( 𝐵 · ( √ ‘ 𝐷 ) ) ) ) / ( 𝐴 · 𝑄 ) ) ) |
131 |
127 113
|
addcld |
⊢ ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐴 ≠ 0 ) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ∧ ( 𝑅 ∈ ℝ+ ∧ 0 ≤ 𝐷 ) ) → ( ( 𝐴 · 𝐶 ) + ( 𝐵 · ( √ ‘ 𝐷 ) ) ) ∈ ℂ ) |
132 |
46
|
adantr |
⊢ ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐴 ≠ 0 ) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ∧ ( 𝑅 ∈ ℝ+ ∧ 0 ≤ 𝐷 ) ) → 𝑄 ≠ 0 ) |
133 |
|
simpl1r |
⊢ ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐴 ≠ 0 ) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ∧ ( 𝑅 ∈ ℝ+ ∧ 0 ≤ 𝐷 ) ) → 𝐴 ≠ 0 ) |
134 |
131 124 90 132 133
|
divcan5d |
⊢ ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐴 ≠ 0 ) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ∧ ( 𝑅 ∈ ℝ+ ∧ 0 ≤ 𝐷 ) ) → ( ( 𝐴 · ( ( 𝐴 · 𝐶 ) + ( 𝐵 · ( √ ‘ 𝐷 ) ) ) ) / ( 𝐴 · 𝑄 ) ) = ( ( ( 𝐴 · 𝐶 ) + ( 𝐵 · ( √ ‘ 𝐷 ) ) ) / 𝑄 ) ) |
135 |
130 134
|
eqtrd |
⊢ ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐴 ≠ 0 ) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ∧ ( 𝑅 ∈ ℝ+ ∧ 0 ≤ 𝐷 ) ) → ( ( ( 𝐴 · ( 𝐴 · 𝐶 ) ) + ( 𝐴 · ( 𝐵 · ( √ ‘ 𝐷 ) ) ) ) / ( 𝐴 · 𝑄 ) ) = ( ( ( 𝐴 · 𝐶 ) + ( 𝐵 · ( √ ‘ 𝐷 ) ) ) / 𝑄 ) ) |
136 |
117 126 135
|
3eqtrd |
⊢ ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐴 ≠ 0 ) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ∧ ( 𝑅 ∈ ℝ+ ∧ 0 ≤ 𝐷 ) ) → ( ( ( 𝑄 · 𝐶 ) − ( 𝐵 · ( ( 𝐵 · 𝐶 ) − ( 𝐴 · ( √ ‘ 𝐷 ) ) ) ) ) / ( 𝑄 · 𝐴 ) ) = ( ( ( 𝐴 · 𝐶 ) + ( 𝐵 · ( √ ‘ 𝐷 ) ) ) / 𝑄 ) ) |
137 |
136
|
eqeq2d |
⊢ ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐴 ≠ 0 ) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ∧ ( 𝑅 ∈ ℝ+ ∧ 0 ≤ 𝐷 ) ) → ( 𝑋 = ( ( ( 𝑄 · 𝐶 ) − ( 𝐵 · ( ( 𝐵 · 𝐶 ) − ( 𝐴 · ( √ ‘ 𝐷 ) ) ) ) ) / ( 𝑄 · 𝐴 ) ) ↔ 𝑋 = ( ( ( 𝐴 · 𝐶 ) + ( 𝐵 · ( √ ‘ 𝐷 ) ) ) / 𝑄 ) ) ) |
138 |
137
|
biimpd |
⊢ ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐴 ≠ 0 ) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ∧ ( 𝑅 ∈ ℝ+ ∧ 0 ≤ 𝐷 ) ) → ( 𝑋 = ( ( ( 𝑄 · 𝐶 ) − ( 𝐵 · ( ( 𝐵 · 𝐶 ) − ( 𝐴 · ( √ ‘ 𝐷 ) ) ) ) ) / ( 𝑄 · 𝐴 ) ) → 𝑋 = ( ( ( 𝐴 · 𝐶 ) + ( 𝐵 · ( √ ‘ 𝐷 ) ) ) / 𝑄 ) ) ) |
139 |
138
|
3adant3 |
⊢ ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐴 ≠ 0 ) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ∧ ( 𝑅 ∈ ℝ+ ∧ 0 ≤ 𝐷 ) ∧ ( 𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ ) ) → ( 𝑋 = ( ( ( 𝑄 · 𝐶 ) − ( 𝐵 · ( ( 𝐵 · 𝐶 ) − ( 𝐴 · ( √ ‘ 𝐷 ) ) ) ) ) / ( 𝑄 · 𝐴 ) ) → 𝑋 = ( ( ( 𝐴 · 𝐶 ) + ( 𝐵 · ( √ ‘ 𝐷 ) ) ) / 𝑄 ) ) ) |
140 |
139
|
adantr |
⊢ ( ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐴 ≠ 0 ) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ∧ ( 𝑅 ∈ ℝ+ ∧ 0 ≤ 𝐷 ) ∧ ( 𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ ) ) ∧ 𝑌 = ( ( ( 𝐵 · 𝐶 ) − ( 𝐴 · ( √ ‘ 𝐷 ) ) ) / 𝑄 ) ) → ( 𝑋 = ( ( ( 𝑄 · 𝐶 ) − ( 𝐵 · ( ( 𝐵 · 𝐶 ) − ( 𝐴 · ( √ ‘ 𝐷 ) ) ) ) ) / ( 𝑄 · 𝐴 ) ) → 𝑋 = ( ( ( 𝐴 · 𝐶 ) + ( 𝐵 · ( √ ‘ 𝐷 ) ) ) / 𝑄 ) ) ) |
141 |
76 140
|
sylbid |
⊢ ( ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐴 ≠ 0 ) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ∧ ( 𝑅 ∈ ℝ+ ∧ 0 ≤ 𝐷 ) ∧ ( 𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ ) ) ∧ 𝑌 = ( ( ( 𝐵 · 𝐶 ) − ( 𝐴 · ( √ ‘ 𝐷 ) ) ) / 𝑄 ) ) → ( ( ( 𝐴 · 𝑋 ) + ( 𝐵 · 𝑌 ) ) = 𝐶 → 𝑋 = ( ( ( 𝐴 · 𝐶 ) + ( 𝐵 · ( √ ‘ 𝐷 ) ) ) / 𝑄 ) ) ) |
142 |
141
|
ex |
⊢ ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐴 ≠ 0 ) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ∧ ( 𝑅 ∈ ℝ+ ∧ 0 ≤ 𝐷 ) ∧ ( 𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ ) ) → ( 𝑌 = ( ( ( 𝐵 · 𝐶 ) − ( 𝐴 · ( √ ‘ 𝐷 ) ) ) / 𝑄 ) → ( ( ( 𝐴 · 𝑋 ) + ( 𝐵 · 𝑌 ) ) = 𝐶 → 𝑋 = ( ( ( 𝐴 · 𝐶 ) + ( 𝐵 · ( √ ‘ 𝐷 ) ) ) / 𝑄 ) ) ) ) |
143 |
142
|
com23 |
⊢ ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐴 ≠ 0 ) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ∧ ( 𝑅 ∈ ℝ+ ∧ 0 ≤ 𝐷 ) ∧ ( 𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ ) ) → ( ( ( 𝐴 · 𝑋 ) + ( 𝐵 · 𝑌 ) ) = 𝐶 → ( 𝑌 = ( ( ( 𝐵 · 𝐶 ) − ( 𝐴 · ( √ ‘ 𝐷 ) ) ) / 𝑄 ) → 𝑋 = ( ( ( 𝐴 · 𝐶 ) + ( 𝐵 · ( √ ‘ 𝐷 ) ) ) / 𝑄 ) ) ) ) |
144 |
143
|
adantld |
⊢ ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐴 ≠ 0 ) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ∧ ( 𝑅 ∈ ℝ+ ∧ 0 ≤ 𝐷 ) ∧ ( 𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ ) ) → ( ( ( ( 𝑋 ↑ 2 ) + ( 𝑌 ↑ 2 ) ) = ( 𝑅 ↑ 2 ) ∧ ( ( 𝐴 · 𝑋 ) + ( 𝐵 · 𝑌 ) ) = 𝐶 ) → ( 𝑌 = ( ( ( 𝐵 · 𝐶 ) − ( 𝐴 · ( √ ‘ 𝐷 ) ) ) / 𝑄 ) → 𝑋 = ( ( ( 𝐴 · 𝐶 ) + ( 𝐵 · ( √ ‘ 𝐷 ) ) ) / 𝑄 ) ) ) ) |
145 |
144
|
imp |
⊢ ( ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐴 ≠ 0 ) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ∧ ( 𝑅 ∈ ℝ+ ∧ 0 ≤ 𝐷 ) ∧ ( 𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ ) ) ∧ ( ( ( 𝑋 ↑ 2 ) + ( 𝑌 ↑ 2 ) ) = ( 𝑅 ↑ 2 ) ∧ ( ( 𝐴 · 𝑋 ) + ( 𝐵 · 𝑌 ) ) = 𝐶 ) ) → ( 𝑌 = ( ( ( 𝐵 · 𝐶 ) − ( 𝐴 · ( √ ‘ 𝐷 ) ) ) / 𝑄 ) → 𝑋 = ( ( ( 𝐴 · 𝐶 ) + ( 𝐵 · ( √ ‘ 𝐷 ) ) ) / 𝑄 ) ) ) |
146 |
145
|
ancrd |
⊢ ( ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐴 ≠ 0 ) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ∧ ( 𝑅 ∈ ℝ+ ∧ 0 ≤ 𝐷 ) ∧ ( 𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ ) ) ∧ ( ( ( 𝑋 ↑ 2 ) + ( 𝑌 ↑ 2 ) ) = ( 𝑅 ↑ 2 ) ∧ ( ( 𝐴 · 𝑋 ) + ( 𝐵 · 𝑌 ) ) = 𝐶 ) ) → ( 𝑌 = ( ( ( 𝐵 · 𝐶 ) − ( 𝐴 · ( √ ‘ 𝐷 ) ) ) / 𝑄 ) → ( 𝑋 = ( ( ( 𝐴 · 𝐶 ) + ( 𝐵 · ( √ ‘ 𝐷 ) ) ) / 𝑄 ) ∧ 𝑌 = ( ( ( 𝐵 · 𝐶 ) − ( 𝐴 · ( √ ‘ 𝐷 ) ) ) / 𝑄 ) ) ) ) |
147 |
|
oveq2 |
⊢ ( 𝑌 = ( ( ( 𝐵 · 𝐶 ) + ( 𝐴 · ( √ ‘ 𝐷 ) ) ) / 𝑄 ) → ( 𝐵 · 𝑌 ) = ( 𝐵 · ( ( ( 𝐵 · 𝐶 ) + ( 𝐴 · ( √ ‘ 𝐷 ) ) ) / 𝑄 ) ) ) |
148 |
147
|
oveq2d |
⊢ ( 𝑌 = ( ( ( 𝐵 · 𝐶 ) + ( 𝐴 · ( √ ‘ 𝐷 ) ) ) / 𝑄 ) → ( ( 𝐴 · 𝑋 ) + ( 𝐵 · 𝑌 ) ) = ( ( 𝐴 · 𝑋 ) + ( 𝐵 · ( ( ( 𝐵 · 𝐶 ) + ( 𝐴 · ( √ ‘ 𝐷 ) ) ) / 𝑄 ) ) ) ) |
149 |
148
|
eqeq1d |
⊢ ( 𝑌 = ( ( ( 𝐵 · 𝐶 ) + ( 𝐴 · ( √ ‘ 𝐷 ) ) ) / 𝑄 ) → ( ( ( 𝐴 · 𝑋 ) + ( 𝐵 · 𝑌 ) ) = 𝐶 ↔ ( ( 𝐴 · 𝑋 ) + ( 𝐵 · ( ( ( 𝐵 · 𝐶 ) + ( 𝐴 · ( √ ‘ 𝐷 ) ) ) / 𝑄 ) ) ) = 𝐶 ) ) |
150 |
20 40
|
addcld |
⊢ ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐴 ≠ 0 ) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ∧ ( 𝑅 ∈ ℝ+ ∧ 0 ≤ 𝐷 ) ∧ ( 𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ ) ) → ( ( 𝐵 · 𝐶 ) + ( 𝐴 · ( √ ‘ 𝐷 ) ) ) ∈ ℂ ) |
151 |
17 150 43 47
|
divassd |
⊢ ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐴 ≠ 0 ) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ∧ ( 𝑅 ∈ ℝ+ ∧ 0 ≤ 𝐷 ) ∧ ( 𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ ) ) → ( ( 𝐵 · ( ( 𝐵 · 𝐶 ) + ( 𝐴 · ( √ ‘ 𝐷 ) ) ) ) / 𝑄 ) = ( 𝐵 · ( ( ( 𝐵 · 𝐶 ) + ( 𝐴 · ( √ ‘ 𝐷 ) ) ) / 𝑄 ) ) ) |
152 |
151
|
eqcomd |
⊢ ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐴 ≠ 0 ) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ∧ ( 𝑅 ∈ ℝ+ ∧ 0 ≤ 𝐷 ) ∧ ( 𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ ) ) → ( 𝐵 · ( ( ( 𝐵 · 𝐶 ) + ( 𝐴 · ( √ ‘ 𝐷 ) ) ) / 𝑄 ) ) = ( ( 𝐵 · ( ( 𝐵 · 𝐶 ) + ( 𝐴 · ( √ ‘ 𝐷 ) ) ) ) / 𝑄 ) ) |
153 |
152
|
oveq2d |
⊢ ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐴 ≠ 0 ) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ∧ ( 𝑅 ∈ ℝ+ ∧ 0 ≤ 𝐷 ) ∧ ( 𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ ) ) → ( ( 𝐴 · 𝑋 ) + ( 𝐵 · ( ( ( 𝐵 · 𝐶 ) + ( 𝐴 · ( √ ‘ 𝐷 ) ) ) / 𝑄 ) ) ) = ( ( 𝐴 · 𝑋 ) + ( ( 𝐵 · ( ( 𝐵 · 𝐶 ) + ( 𝐴 · ( √ ‘ 𝐷 ) ) ) ) / 𝑄 ) ) ) |
154 |
153 52
|
eqeq12d |
⊢ ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐴 ≠ 0 ) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ∧ ( 𝑅 ∈ ℝ+ ∧ 0 ≤ 𝐷 ) ∧ ( 𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ ) ) → ( ( ( 𝐴 · 𝑋 ) + ( 𝐵 · ( ( ( 𝐵 · 𝐶 ) + ( 𝐴 · ( √ ‘ 𝐷 ) ) ) / 𝑄 ) ) ) = 𝐶 ↔ ( ( 𝐴 · 𝑋 ) + ( ( 𝐵 · ( ( 𝐵 · 𝐶 ) + ( 𝐴 · ( √ ‘ 𝐷 ) ) ) ) / 𝑄 ) ) = ( ( 𝑄 · 𝐶 ) / 𝑄 ) ) ) |
155 |
17 150
|
mulcld |
⊢ ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐴 ≠ 0 ) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ∧ ( 𝑅 ∈ ℝ+ ∧ 0 ≤ 𝐷 ) ∧ ( 𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ ) ) → ( 𝐵 · ( ( 𝐵 · 𝐶 ) + ( 𝐴 · ( √ ‘ 𝐷 ) ) ) ) ∈ ℂ ) |
156 |
54 155 43 47
|
divsubdird |
⊢ ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐴 ≠ 0 ) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ∧ ( 𝑅 ∈ ℝ+ ∧ 0 ≤ 𝐷 ) ∧ ( 𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ ) ) → ( ( ( 𝑄 · 𝐶 ) − ( 𝐵 · ( ( 𝐵 · 𝐶 ) + ( 𝐴 · ( √ ‘ 𝐷 ) ) ) ) ) / 𝑄 ) = ( ( ( 𝑄 · 𝐶 ) / 𝑄 ) − ( ( 𝐵 · ( ( 𝐵 · 𝐶 ) + ( 𝐴 · ( √ ‘ 𝐷 ) ) ) ) / 𝑄 ) ) ) |
157 |
156
|
eqcomd |
⊢ ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐴 ≠ 0 ) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ∧ ( 𝑅 ∈ ℝ+ ∧ 0 ≤ 𝐷 ) ∧ ( 𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ ) ) → ( ( ( 𝑄 · 𝐶 ) / 𝑄 ) − ( ( 𝐵 · ( ( 𝐵 · 𝐶 ) + ( 𝐴 · ( √ ‘ 𝐷 ) ) ) ) / 𝑄 ) ) = ( ( ( 𝑄 · 𝐶 ) − ( 𝐵 · ( ( 𝐵 · 𝐶 ) + ( 𝐴 · ( √ ‘ 𝐷 ) ) ) ) ) / 𝑄 ) ) |
158 |
157
|
eqeq1d |
⊢ ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐴 ≠ 0 ) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ∧ ( 𝑅 ∈ ℝ+ ∧ 0 ≤ 𝐷 ) ∧ ( 𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ ) ) → ( ( ( ( 𝑄 · 𝐶 ) / 𝑄 ) − ( ( 𝐵 · ( ( 𝐵 · 𝐶 ) + ( 𝐴 · ( √ ‘ 𝐷 ) ) ) ) / 𝑄 ) ) = ( 𝐴 · 𝑋 ) ↔ ( ( ( 𝑄 · 𝐶 ) − ( 𝐵 · ( ( 𝐵 · 𝐶 ) + ( 𝐴 · ( √ ‘ 𝐷 ) ) ) ) ) / 𝑄 ) = ( 𝐴 · 𝑋 ) ) ) |
159 |
155 43 47
|
divcld |
⊢ ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐴 ≠ 0 ) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ∧ ( 𝑅 ∈ ℝ+ ∧ 0 ≤ 𝐷 ) ∧ ( 𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ ) ) → ( ( 𝐵 · ( ( 𝐵 · 𝐶 ) + ( 𝐴 · ( √ ‘ 𝐷 ) ) ) ) / 𝑄 ) ∈ ℂ ) |
160 |
59 159 63
|
subadd2d |
⊢ ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐴 ≠ 0 ) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ∧ ( 𝑅 ∈ ℝ+ ∧ 0 ≤ 𝐷 ) ∧ ( 𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ ) ) → ( ( ( ( 𝑄 · 𝐶 ) / 𝑄 ) − ( ( 𝐵 · ( ( 𝐵 · 𝐶 ) + ( 𝐴 · ( √ ‘ 𝐷 ) ) ) ) / 𝑄 ) ) = ( 𝐴 · 𝑋 ) ↔ ( ( 𝐴 · 𝑋 ) + ( ( 𝐵 · ( ( 𝐵 · 𝐶 ) + ( 𝐴 · ( √ ‘ 𝐷 ) ) ) ) / 𝑄 ) ) = ( ( 𝑄 · 𝐶 ) / 𝑄 ) ) ) |
161 |
|
eqcom |
⊢ ( ( ( ( ( 𝑄 · 𝐶 ) − ( 𝐵 · ( ( 𝐵 · 𝐶 ) + ( 𝐴 · ( √ ‘ 𝐷 ) ) ) ) ) / 𝑄 ) / 𝐴 ) = 𝑋 ↔ 𝑋 = ( ( ( ( 𝑄 · 𝐶 ) − ( 𝐵 · ( ( 𝐵 · 𝐶 ) + ( 𝐴 · ( √ ‘ 𝐷 ) ) ) ) ) / 𝑄 ) / 𝐴 ) ) |
162 |
161
|
a1i |
⊢ ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐴 ≠ 0 ) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ∧ ( 𝑅 ∈ ℝ+ ∧ 0 ≤ 𝐷 ) ∧ ( 𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ ) ) → ( ( ( ( ( 𝑄 · 𝐶 ) − ( 𝐵 · ( ( 𝐵 · 𝐶 ) + ( 𝐴 · ( √ ‘ 𝐷 ) ) ) ) ) / 𝑄 ) / 𝐴 ) = 𝑋 ↔ 𝑋 = ( ( ( ( 𝑄 · 𝐶 ) − ( 𝐵 · ( ( 𝐵 · 𝐶 ) + ( 𝐴 · ( √ ‘ 𝐷 ) ) ) ) ) / 𝑄 ) / 𝐴 ) ) ) |
163 |
54 155
|
subcld |
⊢ ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐴 ≠ 0 ) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ∧ ( 𝑅 ∈ ℝ+ ∧ 0 ≤ 𝐷 ) ∧ ( 𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ ) ) → ( ( 𝑄 · 𝐶 ) − ( 𝐵 · ( ( 𝐵 · 𝐶 ) + ( 𝐴 · ( √ ‘ 𝐷 ) ) ) ) ) ∈ ℂ ) |
164 |
163 43 47
|
divcld |
⊢ ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐴 ≠ 0 ) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ∧ ( 𝑅 ∈ ℝ+ ∧ 0 ≤ 𝐷 ) ∧ ( 𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ ) ) → ( ( ( 𝑄 · 𝐶 ) − ( 𝐵 · ( ( 𝐵 · 𝐶 ) + ( 𝐴 · ( √ ‘ 𝐷 ) ) ) ) ) / 𝑄 ) ∈ ℂ ) |
165 |
164 62 22 69
|
divmul2d |
⊢ ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐴 ≠ 0 ) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ∧ ( 𝑅 ∈ ℝ+ ∧ 0 ≤ 𝐷 ) ∧ ( 𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ ) ) → ( ( ( ( ( 𝑄 · 𝐶 ) − ( 𝐵 · ( ( 𝐵 · 𝐶 ) + ( 𝐴 · ( √ ‘ 𝐷 ) ) ) ) ) / 𝑄 ) / 𝐴 ) = 𝑋 ↔ ( ( ( 𝑄 · 𝐶 ) − ( 𝐵 · ( ( 𝐵 · 𝐶 ) + ( 𝐴 · ( √ ‘ 𝐷 ) ) ) ) ) / 𝑄 ) = ( 𝐴 · 𝑋 ) ) ) |
166 |
163 43 22 47 69
|
divdiv1d |
⊢ ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐴 ≠ 0 ) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ∧ ( 𝑅 ∈ ℝ+ ∧ 0 ≤ 𝐷 ) ∧ ( 𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ ) ) → ( ( ( ( 𝑄 · 𝐶 ) − ( 𝐵 · ( ( 𝐵 · 𝐶 ) + ( 𝐴 · ( √ ‘ 𝐷 ) ) ) ) ) / 𝑄 ) / 𝐴 ) = ( ( ( 𝑄 · 𝐶 ) − ( 𝐵 · ( ( 𝐵 · 𝐶 ) + ( 𝐴 · ( √ ‘ 𝐷 ) ) ) ) ) / ( 𝑄 · 𝐴 ) ) ) |
167 |
166
|
eqeq2d |
⊢ ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐴 ≠ 0 ) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ∧ ( 𝑅 ∈ ℝ+ ∧ 0 ≤ 𝐷 ) ∧ ( 𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ ) ) → ( 𝑋 = ( ( ( ( 𝑄 · 𝐶 ) − ( 𝐵 · ( ( 𝐵 · 𝐶 ) + ( 𝐴 · ( √ ‘ 𝐷 ) ) ) ) ) / 𝑄 ) / 𝐴 ) ↔ 𝑋 = ( ( ( 𝑄 · 𝐶 ) − ( 𝐵 · ( ( 𝐵 · 𝐶 ) + ( 𝐴 · ( √ ‘ 𝐷 ) ) ) ) ) / ( 𝑄 · 𝐴 ) ) ) ) |
168 |
162 165 167
|
3bitr3d |
⊢ ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐴 ≠ 0 ) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ∧ ( 𝑅 ∈ ℝ+ ∧ 0 ≤ 𝐷 ) ∧ ( 𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ ) ) → ( ( ( ( 𝑄 · 𝐶 ) − ( 𝐵 · ( ( 𝐵 · 𝐶 ) + ( 𝐴 · ( √ ‘ 𝐷 ) ) ) ) ) / 𝑄 ) = ( 𝐴 · 𝑋 ) ↔ 𝑋 = ( ( ( 𝑄 · 𝐶 ) − ( 𝐵 · ( ( 𝐵 · 𝐶 ) + ( 𝐴 · ( √ ‘ 𝐷 ) ) ) ) ) / ( 𝑄 · 𝐴 ) ) ) ) |
169 |
158 160 168
|
3bitr3d |
⊢ ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐴 ≠ 0 ) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ∧ ( 𝑅 ∈ ℝ+ ∧ 0 ≤ 𝐷 ) ∧ ( 𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ ) ) → ( ( ( 𝐴 · 𝑋 ) + ( ( 𝐵 · ( ( 𝐵 · 𝐶 ) + ( 𝐴 · ( √ ‘ 𝐷 ) ) ) ) / 𝑄 ) ) = ( ( 𝑄 · 𝐶 ) / 𝑄 ) ↔ 𝑋 = ( ( ( 𝑄 · 𝐶 ) − ( 𝐵 · ( ( 𝐵 · 𝐶 ) + ( 𝐴 · ( √ ‘ 𝐷 ) ) ) ) ) / ( 𝑄 · 𝐴 ) ) ) ) |
170 |
154 169
|
bitrd |
⊢ ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐴 ≠ 0 ) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ∧ ( 𝑅 ∈ ℝ+ ∧ 0 ≤ 𝐷 ) ∧ ( 𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ ) ) → ( ( ( 𝐴 · 𝑋 ) + ( 𝐵 · ( ( ( 𝐵 · 𝐶 ) + ( 𝐴 · ( √ ‘ 𝐷 ) ) ) / 𝑄 ) ) ) = 𝐶 ↔ 𝑋 = ( ( ( 𝑄 · 𝐶 ) − ( 𝐵 · ( ( 𝐵 · 𝐶 ) + ( 𝐴 · ( √ ‘ 𝐷 ) ) ) ) ) / ( 𝑄 · 𝐴 ) ) ) ) |
171 |
149 170
|
sylan9bbr |
⊢ ( ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐴 ≠ 0 ) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ∧ ( 𝑅 ∈ ℝ+ ∧ 0 ≤ 𝐷 ) ∧ ( 𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ ) ) ∧ 𝑌 = ( ( ( 𝐵 · 𝐶 ) + ( 𝐴 · ( √ ‘ 𝐷 ) ) ) / 𝑄 ) ) → ( ( ( 𝐴 · 𝑋 ) + ( 𝐵 · 𝑌 ) ) = 𝐶 ↔ 𝑋 = ( ( ( 𝑄 · 𝐶 ) − ( 𝐵 · ( ( 𝐵 · 𝐶 ) + ( 𝐴 · ( √ ‘ 𝐷 ) ) ) ) ) / ( 𝑄 · 𝐴 ) ) ) ) |
172 |
87 89 93
|
adddid |
⊢ ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐴 ≠ 0 ) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ∧ ( 𝑅 ∈ ℝ+ ∧ 0 ≤ 𝐷 ) ) → ( 𝐵 · ( ( 𝐵 · 𝐶 ) + ( 𝐴 · ( √ ‘ 𝐷 ) ) ) ) = ( ( 𝐵 · ( 𝐵 · 𝐶 ) ) + ( 𝐵 · ( 𝐴 · ( √ ‘ 𝐷 ) ) ) ) ) |
173 |
102 103
|
oveq12d |
⊢ ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐴 ≠ 0 ) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ∧ ( 𝑅 ∈ ℝ+ ∧ 0 ≤ 𝐷 ) ) → ( ( 𝐵 · ( 𝐵 · 𝐶 ) ) + ( 𝐵 · ( 𝐴 · ( √ ‘ 𝐷 ) ) ) ) = ( ( ( 𝐵 ↑ 2 ) · 𝐶 ) + ( 𝐴 · ( 𝐵 · ( √ ‘ 𝐷 ) ) ) ) ) |
174 |
172 173
|
eqtrd |
⊢ ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐴 ≠ 0 ) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ∧ ( 𝑅 ∈ ℝ+ ∧ 0 ≤ 𝐷 ) ) → ( 𝐵 · ( ( 𝐵 · 𝐶 ) + ( 𝐴 · ( √ ‘ 𝐷 ) ) ) ) = ( ( ( 𝐵 ↑ 2 ) · 𝐶 ) + ( 𝐴 · ( 𝐵 · ( √ ‘ 𝐷 ) ) ) ) ) |
175 |
86 174
|
oveq12d |
⊢ ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐴 ≠ 0 ) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ∧ ( 𝑅 ∈ ℝ+ ∧ 0 ≤ 𝐷 ) ) → ( ( 𝑄 · 𝐶 ) − ( 𝐵 · ( ( 𝐵 · 𝐶 ) + ( 𝐴 · ( √ ‘ 𝐷 ) ) ) ) ) = ( ( ( ( 𝐴 ↑ 2 ) · 𝐶 ) + ( ( 𝐵 ↑ 2 ) · 𝐶 ) ) − ( ( ( 𝐵 ↑ 2 ) · 𝐶 ) + ( 𝐴 · ( 𝐵 · ( √ ‘ 𝐷 ) ) ) ) ) ) |
176 |
111
|
oveq1d |
⊢ ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐴 ≠ 0 ) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ∧ ( 𝑅 ∈ ℝ+ ∧ 0 ≤ 𝐷 ) ) → ( ( ( ( 𝐴 ↑ 2 ) · 𝐶 ) + ( ( 𝐵 ↑ 2 ) · 𝐶 ) ) − ( ( ( 𝐵 ↑ 2 ) · 𝐶 ) + ( 𝐴 · ( 𝐵 · ( √ ‘ 𝐷 ) ) ) ) ) = ( ( ( ( 𝐵 ↑ 2 ) · 𝐶 ) + ( ( 𝐴 ↑ 2 ) · 𝐶 ) ) − ( ( ( 𝐵 ↑ 2 ) · 𝐶 ) + ( 𝐴 · ( 𝐵 · ( √ ‘ 𝐷 ) ) ) ) ) ) |
177 |
110 108 114
|
pnpcand |
⊢ ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐴 ≠ 0 ) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ∧ ( 𝑅 ∈ ℝ+ ∧ 0 ≤ 𝐷 ) ) → ( ( ( ( 𝐵 ↑ 2 ) · 𝐶 ) + ( ( 𝐴 ↑ 2 ) · 𝐶 ) ) − ( ( ( 𝐵 ↑ 2 ) · 𝐶 ) + ( 𝐴 · ( 𝐵 · ( √ ‘ 𝐷 ) ) ) ) ) = ( ( ( 𝐴 ↑ 2 ) · 𝐶 ) − ( 𝐴 · ( 𝐵 · ( √ ‘ 𝐷 ) ) ) ) ) |
178 |
175 176 177
|
3eqtrd |
⊢ ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐴 ≠ 0 ) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ∧ ( 𝑅 ∈ ℝ+ ∧ 0 ≤ 𝐷 ) ) → ( ( 𝑄 · 𝐶 ) − ( 𝐵 · ( ( 𝐵 · 𝐶 ) + ( 𝐴 · ( √ ‘ 𝐷 ) ) ) ) ) = ( ( ( 𝐴 ↑ 2 ) · 𝐶 ) − ( 𝐴 · ( 𝐵 · ( √ ‘ 𝐷 ) ) ) ) ) |
179 |
178
|
oveq1d |
⊢ ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐴 ≠ 0 ) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ∧ ( 𝑅 ∈ ℝ+ ∧ 0 ≤ 𝐷 ) ) → ( ( ( 𝑄 · 𝐶 ) − ( 𝐵 · ( ( 𝐵 · 𝐶 ) + ( 𝐴 · ( √ ‘ 𝐷 ) ) ) ) ) / ( 𝑄 · 𝐴 ) ) = ( ( ( ( 𝐴 ↑ 2 ) · 𝐶 ) − ( 𝐴 · ( 𝐵 · ( √ ‘ 𝐷 ) ) ) ) / ( 𝑄 · 𝐴 ) ) ) |
180 |
122
|
oveq1d |
⊢ ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐴 ≠ 0 ) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ∧ ( 𝑅 ∈ ℝ+ ∧ 0 ≤ 𝐷 ) ) → ( ( ( 𝐴 ↑ 2 ) · 𝐶 ) − ( 𝐴 · ( 𝐵 · ( √ ‘ 𝐷 ) ) ) ) = ( ( 𝐴 · ( 𝐴 · 𝐶 ) ) − ( 𝐴 · ( 𝐵 · ( √ ‘ 𝐷 ) ) ) ) ) |
181 |
180 125
|
oveq12d |
⊢ ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐴 ≠ 0 ) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ∧ ( 𝑅 ∈ ℝ+ ∧ 0 ≤ 𝐷 ) ) → ( ( ( ( 𝐴 ↑ 2 ) · 𝐶 ) − ( 𝐴 · ( 𝐵 · ( √ ‘ 𝐷 ) ) ) ) / ( 𝑄 · 𝐴 ) ) = ( ( ( 𝐴 · ( 𝐴 · 𝐶 ) ) − ( 𝐴 · ( 𝐵 · ( √ ‘ 𝐷 ) ) ) ) / ( 𝐴 · 𝑄 ) ) ) |
182 |
90 127 113
|
subdid |
⊢ ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐴 ≠ 0 ) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ∧ ( 𝑅 ∈ ℝ+ ∧ 0 ≤ 𝐷 ) ) → ( 𝐴 · ( ( 𝐴 · 𝐶 ) − ( 𝐵 · ( √ ‘ 𝐷 ) ) ) ) = ( ( 𝐴 · ( 𝐴 · 𝐶 ) ) − ( 𝐴 · ( 𝐵 · ( √ ‘ 𝐷 ) ) ) ) ) |
183 |
182
|
eqcomd |
⊢ ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐴 ≠ 0 ) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ∧ ( 𝑅 ∈ ℝ+ ∧ 0 ≤ 𝐷 ) ) → ( ( 𝐴 · ( 𝐴 · 𝐶 ) ) − ( 𝐴 · ( 𝐵 · ( √ ‘ 𝐷 ) ) ) ) = ( 𝐴 · ( ( 𝐴 · 𝐶 ) − ( 𝐵 · ( √ ‘ 𝐷 ) ) ) ) ) |
184 |
183
|
oveq1d |
⊢ ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐴 ≠ 0 ) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ∧ ( 𝑅 ∈ ℝ+ ∧ 0 ≤ 𝐷 ) ) → ( ( ( 𝐴 · ( 𝐴 · 𝐶 ) ) − ( 𝐴 · ( 𝐵 · ( √ ‘ 𝐷 ) ) ) ) / ( 𝐴 · 𝑄 ) ) = ( ( 𝐴 · ( ( 𝐴 · 𝐶 ) − ( 𝐵 · ( √ ‘ 𝐷 ) ) ) ) / ( 𝐴 · 𝑄 ) ) ) |
185 |
127 113
|
subcld |
⊢ ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐴 ≠ 0 ) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ∧ ( 𝑅 ∈ ℝ+ ∧ 0 ≤ 𝐷 ) ) → ( ( 𝐴 · 𝐶 ) − ( 𝐵 · ( √ ‘ 𝐷 ) ) ) ∈ ℂ ) |
186 |
185 124 90 132 133
|
divcan5d |
⊢ ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐴 ≠ 0 ) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ∧ ( 𝑅 ∈ ℝ+ ∧ 0 ≤ 𝐷 ) ) → ( ( 𝐴 · ( ( 𝐴 · 𝐶 ) − ( 𝐵 · ( √ ‘ 𝐷 ) ) ) ) / ( 𝐴 · 𝑄 ) ) = ( ( ( 𝐴 · 𝐶 ) − ( 𝐵 · ( √ ‘ 𝐷 ) ) ) / 𝑄 ) ) |
187 |
184 186
|
eqtrd |
⊢ ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐴 ≠ 0 ) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ∧ ( 𝑅 ∈ ℝ+ ∧ 0 ≤ 𝐷 ) ) → ( ( ( 𝐴 · ( 𝐴 · 𝐶 ) ) − ( 𝐴 · ( 𝐵 · ( √ ‘ 𝐷 ) ) ) ) / ( 𝐴 · 𝑄 ) ) = ( ( ( 𝐴 · 𝐶 ) − ( 𝐵 · ( √ ‘ 𝐷 ) ) ) / 𝑄 ) ) |
188 |
179 181 187
|
3eqtrd |
⊢ ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐴 ≠ 0 ) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ∧ ( 𝑅 ∈ ℝ+ ∧ 0 ≤ 𝐷 ) ) → ( ( ( 𝑄 · 𝐶 ) − ( 𝐵 · ( ( 𝐵 · 𝐶 ) + ( 𝐴 · ( √ ‘ 𝐷 ) ) ) ) ) / ( 𝑄 · 𝐴 ) ) = ( ( ( 𝐴 · 𝐶 ) − ( 𝐵 · ( √ ‘ 𝐷 ) ) ) / 𝑄 ) ) |
189 |
188
|
eqeq2d |
⊢ ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐴 ≠ 0 ) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ∧ ( 𝑅 ∈ ℝ+ ∧ 0 ≤ 𝐷 ) ) → ( 𝑋 = ( ( ( 𝑄 · 𝐶 ) − ( 𝐵 · ( ( 𝐵 · 𝐶 ) + ( 𝐴 · ( √ ‘ 𝐷 ) ) ) ) ) / ( 𝑄 · 𝐴 ) ) ↔ 𝑋 = ( ( ( 𝐴 · 𝐶 ) − ( 𝐵 · ( √ ‘ 𝐷 ) ) ) / 𝑄 ) ) ) |
190 |
189
|
biimpd |
⊢ ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐴 ≠ 0 ) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ∧ ( 𝑅 ∈ ℝ+ ∧ 0 ≤ 𝐷 ) ) → ( 𝑋 = ( ( ( 𝑄 · 𝐶 ) − ( 𝐵 · ( ( 𝐵 · 𝐶 ) + ( 𝐴 · ( √ ‘ 𝐷 ) ) ) ) ) / ( 𝑄 · 𝐴 ) ) → 𝑋 = ( ( ( 𝐴 · 𝐶 ) − ( 𝐵 · ( √ ‘ 𝐷 ) ) ) / 𝑄 ) ) ) |
191 |
190
|
3adant3 |
⊢ ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐴 ≠ 0 ) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ∧ ( 𝑅 ∈ ℝ+ ∧ 0 ≤ 𝐷 ) ∧ ( 𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ ) ) → ( 𝑋 = ( ( ( 𝑄 · 𝐶 ) − ( 𝐵 · ( ( 𝐵 · 𝐶 ) + ( 𝐴 · ( √ ‘ 𝐷 ) ) ) ) ) / ( 𝑄 · 𝐴 ) ) → 𝑋 = ( ( ( 𝐴 · 𝐶 ) − ( 𝐵 · ( √ ‘ 𝐷 ) ) ) / 𝑄 ) ) ) |
192 |
191
|
adantr |
⊢ ( ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐴 ≠ 0 ) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ∧ ( 𝑅 ∈ ℝ+ ∧ 0 ≤ 𝐷 ) ∧ ( 𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ ) ) ∧ 𝑌 = ( ( ( 𝐵 · 𝐶 ) + ( 𝐴 · ( √ ‘ 𝐷 ) ) ) / 𝑄 ) ) → ( 𝑋 = ( ( ( 𝑄 · 𝐶 ) − ( 𝐵 · ( ( 𝐵 · 𝐶 ) + ( 𝐴 · ( √ ‘ 𝐷 ) ) ) ) ) / ( 𝑄 · 𝐴 ) ) → 𝑋 = ( ( ( 𝐴 · 𝐶 ) − ( 𝐵 · ( √ ‘ 𝐷 ) ) ) / 𝑄 ) ) ) |
193 |
171 192
|
sylbid |
⊢ ( ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐴 ≠ 0 ) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ∧ ( 𝑅 ∈ ℝ+ ∧ 0 ≤ 𝐷 ) ∧ ( 𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ ) ) ∧ 𝑌 = ( ( ( 𝐵 · 𝐶 ) + ( 𝐴 · ( √ ‘ 𝐷 ) ) ) / 𝑄 ) ) → ( ( ( 𝐴 · 𝑋 ) + ( 𝐵 · 𝑌 ) ) = 𝐶 → 𝑋 = ( ( ( 𝐴 · 𝐶 ) − ( 𝐵 · ( √ ‘ 𝐷 ) ) ) / 𝑄 ) ) ) |
194 |
193
|
ex |
⊢ ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐴 ≠ 0 ) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ∧ ( 𝑅 ∈ ℝ+ ∧ 0 ≤ 𝐷 ) ∧ ( 𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ ) ) → ( 𝑌 = ( ( ( 𝐵 · 𝐶 ) + ( 𝐴 · ( √ ‘ 𝐷 ) ) ) / 𝑄 ) → ( ( ( 𝐴 · 𝑋 ) + ( 𝐵 · 𝑌 ) ) = 𝐶 → 𝑋 = ( ( ( 𝐴 · 𝐶 ) − ( 𝐵 · ( √ ‘ 𝐷 ) ) ) / 𝑄 ) ) ) ) |
195 |
194
|
com23 |
⊢ ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐴 ≠ 0 ) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ∧ ( 𝑅 ∈ ℝ+ ∧ 0 ≤ 𝐷 ) ∧ ( 𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ ) ) → ( ( ( 𝐴 · 𝑋 ) + ( 𝐵 · 𝑌 ) ) = 𝐶 → ( 𝑌 = ( ( ( 𝐵 · 𝐶 ) + ( 𝐴 · ( √ ‘ 𝐷 ) ) ) / 𝑄 ) → 𝑋 = ( ( ( 𝐴 · 𝐶 ) − ( 𝐵 · ( √ ‘ 𝐷 ) ) ) / 𝑄 ) ) ) ) |
196 |
195
|
adantld |
⊢ ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐴 ≠ 0 ) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ∧ ( 𝑅 ∈ ℝ+ ∧ 0 ≤ 𝐷 ) ∧ ( 𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ ) ) → ( ( ( ( 𝑋 ↑ 2 ) + ( 𝑌 ↑ 2 ) ) = ( 𝑅 ↑ 2 ) ∧ ( ( 𝐴 · 𝑋 ) + ( 𝐵 · 𝑌 ) ) = 𝐶 ) → ( 𝑌 = ( ( ( 𝐵 · 𝐶 ) + ( 𝐴 · ( √ ‘ 𝐷 ) ) ) / 𝑄 ) → 𝑋 = ( ( ( 𝐴 · 𝐶 ) − ( 𝐵 · ( √ ‘ 𝐷 ) ) ) / 𝑄 ) ) ) ) |
197 |
196
|
imp |
⊢ ( ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐴 ≠ 0 ) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ∧ ( 𝑅 ∈ ℝ+ ∧ 0 ≤ 𝐷 ) ∧ ( 𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ ) ) ∧ ( ( ( 𝑋 ↑ 2 ) + ( 𝑌 ↑ 2 ) ) = ( 𝑅 ↑ 2 ) ∧ ( ( 𝐴 · 𝑋 ) + ( 𝐵 · 𝑌 ) ) = 𝐶 ) ) → ( 𝑌 = ( ( ( 𝐵 · 𝐶 ) + ( 𝐴 · ( √ ‘ 𝐷 ) ) ) / 𝑄 ) → 𝑋 = ( ( ( 𝐴 · 𝐶 ) − ( 𝐵 · ( √ ‘ 𝐷 ) ) ) / 𝑄 ) ) ) |
198 |
197
|
ancrd |
⊢ ( ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐴 ≠ 0 ) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ∧ ( 𝑅 ∈ ℝ+ ∧ 0 ≤ 𝐷 ) ∧ ( 𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ ) ) ∧ ( ( ( 𝑋 ↑ 2 ) + ( 𝑌 ↑ 2 ) ) = ( 𝑅 ↑ 2 ) ∧ ( ( 𝐴 · 𝑋 ) + ( 𝐵 · 𝑌 ) ) = 𝐶 ) ) → ( 𝑌 = ( ( ( 𝐵 · 𝐶 ) + ( 𝐴 · ( √ ‘ 𝐷 ) ) ) / 𝑄 ) → ( 𝑋 = ( ( ( 𝐴 · 𝐶 ) − ( 𝐵 · ( √ ‘ 𝐷 ) ) ) / 𝑄 ) ∧ 𝑌 = ( ( ( 𝐵 · 𝐶 ) + ( 𝐴 · ( √ ‘ 𝐷 ) ) ) / 𝑄 ) ) ) ) |
199 |
146 198
|
orim12d |
⊢ ( ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐴 ≠ 0 ) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ∧ ( 𝑅 ∈ ℝ+ ∧ 0 ≤ 𝐷 ) ∧ ( 𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ ) ) ∧ ( ( ( 𝑋 ↑ 2 ) + ( 𝑌 ↑ 2 ) ) = ( 𝑅 ↑ 2 ) ∧ ( ( 𝐴 · 𝑋 ) + ( 𝐵 · 𝑌 ) ) = 𝐶 ) ) → ( ( 𝑌 = ( ( ( 𝐵 · 𝐶 ) − ( 𝐴 · ( √ ‘ 𝐷 ) ) ) / 𝑄 ) ∨ 𝑌 = ( ( ( 𝐵 · 𝐶 ) + ( 𝐴 · ( √ ‘ 𝐷 ) ) ) / 𝑄 ) ) → ( ( 𝑋 = ( ( ( 𝐴 · 𝐶 ) + ( 𝐵 · ( √ ‘ 𝐷 ) ) ) / 𝑄 ) ∧ 𝑌 = ( ( ( 𝐵 · 𝐶 ) − ( 𝐴 · ( √ ‘ 𝐷 ) ) ) / 𝑄 ) ) ∨ ( 𝑋 = ( ( ( 𝐴 · 𝐶 ) − ( 𝐵 · ( √ ‘ 𝐷 ) ) ) / 𝑄 ) ∧ 𝑌 = ( ( ( 𝐵 · 𝐶 ) + ( 𝐴 · ( √ ‘ 𝐷 ) ) ) / 𝑄 ) ) ) ) ) |
200 |
12 199
|
mpd |
⊢ ( ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐴 ≠ 0 ) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ∧ ( 𝑅 ∈ ℝ+ ∧ 0 ≤ 𝐷 ) ∧ ( 𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ ) ) ∧ ( ( ( 𝑋 ↑ 2 ) + ( 𝑌 ↑ 2 ) ) = ( 𝑅 ↑ 2 ) ∧ ( ( 𝐴 · 𝑋 ) + ( 𝐵 · 𝑌 ) ) = 𝐶 ) ) → ( ( 𝑋 = ( ( ( 𝐴 · 𝐶 ) + ( 𝐵 · ( √ ‘ 𝐷 ) ) ) / 𝑄 ) ∧ 𝑌 = ( ( ( 𝐵 · 𝐶 ) − ( 𝐴 · ( √ ‘ 𝐷 ) ) ) / 𝑄 ) ) ∨ ( 𝑋 = ( ( ( 𝐴 · 𝐶 ) − ( 𝐵 · ( √ ‘ 𝐷 ) ) ) / 𝑄 ) ∧ 𝑌 = ( ( ( 𝐵 · 𝐶 ) + ( 𝐴 · ( √ ‘ 𝐷 ) ) ) / 𝑄 ) ) ) ) |
201 |
200
|
ex |
⊢ ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐴 ≠ 0 ) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ∧ ( 𝑅 ∈ ℝ+ ∧ 0 ≤ 𝐷 ) ∧ ( 𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ ) ) → ( ( ( ( 𝑋 ↑ 2 ) + ( 𝑌 ↑ 2 ) ) = ( 𝑅 ↑ 2 ) ∧ ( ( 𝐴 · 𝑋 ) + ( 𝐵 · 𝑌 ) ) = 𝐶 ) → ( ( 𝑋 = ( ( ( 𝐴 · 𝐶 ) + ( 𝐵 · ( √ ‘ 𝐷 ) ) ) / 𝑄 ) ∧ 𝑌 = ( ( ( 𝐵 · 𝐶 ) − ( 𝐴 · ( √ ‘ 𝐷 ) ) ) / 𝑄 ) ) ∨ ( 𝑋 = ( ( ( 𝐴 · 𝐶 ) − ( 𝐵 · ( √ ‘ 𝐷 ) ) ) / 𝑄 ) ∧ 𝑌 = ( ( ( 𝐵 · 𝐶 ) + ( 𝐴 · ( √ ‘ 𝐷 ) ) ) / 𝑄 ) ) ) ) ) |