Metamath Proof Explorer


Theorem iunpreima

Description: Preimage of an indexed union. (Contributed by Thierry Arnoux, 27-Mar-2018)

Ref Expression
Assertion iunpreima FunFF-1xAB=xAF-1B

Proof

Step Hyp Ref Expression
1 eliun FyxABxAFyB
2 1 a1i FunFFyxABxAFyB
3 2 rabbidv FunFydomF|FyxAB=ydomF|xAFyB
4 funfn FunFFFndomF
5 fncnvima2 FFndomFF-1xAB=ydomF|FyxAB
6 4 5 sylbi FunFF-1xAB=ydomF|FyxAB
7 iunrab xAydomF|FyB=ydomF|xAFyB
8 7 a1i FunFxAydomF|FyB=ydomF|xAFyB
9 3 6 8 3eqtr4d FunFF-1xAB=xAydomF|FyB
10 fncnvima2 FFndomFF-1B=ydomF|FyB
11 4 10 sylbi FunFF-1B=ydomF|FyB
12 11 iuneq2d FunFxAF-1B=xAydomF|FyB
13 9 12 eqtr4d FunFF-1xAB=xAF-1B