| Step |
Hyp |
Ref |
Expression |
| 1 |
|
eliun |
⊢ ( ( 𝐹 ‘ 𝑦 ) ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ↔ ∃ 𝑥 ∈ 𝐴 ( 𝐹 ‘ 𝑦 ) ∈ 𝐵 ) |
| 2 |
1
|
a1i |
⊢ ( Fun 𝐹 → ( ( 𝐹 ‘ 𝑦 ) ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ↔ ∃ 𝑥 ∈ 𝐴 ( 𝐹 ‘ 𝑦 ) ∈ 𝐵 ) ) |
| 3 |
2
|
rabbidv |
⊢ ( Fun 𝐹 → { 𝑦 ∈ dom 𝐹 ∣ ( 𝐹 ‘ 𝑦 ) ∈ ∪ 𝑥 ∈ 𝐴 𝐵 } = { 𝑦 ∈ dom 𝐹 ∣ ∃ 𝑥 ∈ 𝐴 ( 𝐹 ‘ 𝑦 ) ∈ 𝐵 } ) |
| 4 |
|
funfn |
⊢ ( Fun 𝐹 ↔ 𝐹 Fn dom 𝐹 ) |
| 5 |
|
fncnvima2 |
⊢ ( 𝐹 Fn dom 𝐹 → ( ◡ 𝐹 “ ∪ 𝑥 ∈ 𝐴 𝐵 ) = { 𝑦 ∈ dom 𝐹 ∣ ( 𝐹 ‘ 𝑦 ) ∈ ∪ 𝑥 ∈ 𝐴 𝐵 } ) |
| 6 |
4 5
|
sylbi |
⊢ ( Fun 𝐹 → ( ◡ 𝐹 “ ∪ 𝑥 ∈ 𝐴 𝐵 ) = { 𝑦 ∈ dom 𝐹 ∣ ( 𝐹 ‘ 𝑦 ) ∈ ∪ 𝑥 ∈ 𝐴 𝐵 } ) |
| 7 |
|
iunrab |
⊢ ∪ 𝑥 ∈ 𝐴 { 𝑦 ∈ dom 𝐹 ∣ ( 𝐹 ‘ 𝑦 ) ∈ 𝐵 } = { 𝑦 ∈ dom 𝐹 ∣ ∃ 𝑥 ∈ 𝐴 ( 𝐹 ‘ 𝑦 ) ∈ 𝐵 } |
| 8 |
7
|
a1i |
⊢ ( Fun 𝐹 → ∪ 𝑥 ∈ 𝐴 { 𝑦 ∈ dom 𝐹 ∣ ( 𝐹 ‘ 𝑦 ) ∈ 𝐵 } = { 𝑦 ∈ dom 𝐹 ∣ ∃ 𝑥 ∈ 𝐴 ( 𝐹 ‘ 𝑦 ) ∈ 𝐵 } ) |
| 9 |
3 6 8
|
3eqtr4d |
⊢ ( Fun 𝐹 → ( ◡ 𝐹 “ ∪ 𝑥 ∈ 𝐴 𝐵 ) = ∪ 𝑥 ∈ 𝐴 { 𝑦 ∈ dom 𝐹 ∣ ( 𝐹 ‘ 𝑦 ) ∈ 𝐵 } ) |
| 10 |
|
fncnvima2 |
⊢ ( 𝐹 Fn dom 𝐹 → ( ◡ 𝐹 “ 𝐵 ) = { 𝑦 ∈ dom 𝐹 ∣ ( 𝐹 ‘ 𝑦 ) ∈ 𝐵 } ) |
| 11 |
4 10
|
sylbi |
⊢ ( Fun 𝐹 → ( ◡ 𝐹 “ 𝐵 ) = { 𝑦 ∈ dom 𝐹 ∣ ( 𝐹 ‘ 𝑦 ) ∈ 𝐵 } ) |
| 12 |
11
|
iuneq2d |
⊢ ( Fun 𝐹 → ∪ 𝑥 ∈ 𝐴 ( ◡ 𝐹 “ 𝐵 ) = ∪ 𝑥 ∈ 𝐴 { 𝑦 ∈ dom 𝐹 ∣ ( 𝐹 ‘ 𝑦 ) ∈ 𝐵 } ) |
| 13 |
9 12
|
eqtr4d |
⊢ ( Fun 𝐹 → ( ◡ 𝐹 “ ∪ 𝑥 ∈ 𝐴 𝐵 ) = ∪ 𝑥 ∈ 𝐴 ( ◡ 𝐹 “ 𝐵 ) ) |