Metamath Proof Explorer


Theorem iunrnmptss

Description: A subset relation for an indexed union over the range of function expressed as a mapping. (Contributed by Thierry Arnoux, 27-Mar-2018)

Ref Expression
Hypotheses iunrnmptss.1 ( 𝑦 = 𝐵𝐶 = 𝐷 )
iunrnmptss.2 ( ( 𝜑𝑥𝐴 ) → 𝐵𝑉 )
Assertion iunrnmptss ( 𝜑 𝑦 ∈ ran ( 𝑥𝐴𝐵 ) 𝐶 𝑥𝐴 𝐷 )

Proof

Step Hyp Ref Expression
1 iunrnmptss.1 ( 𝑦 = 𝐵𝐶 = 𝐷 )
2 iunrnmptss.2 ( ( 𝜑𝑥𝐴 ) → 𝐵𝑉 )
3 df-rex ( ∃ 𝑦 ∈ ran ( 𝑥𝐴𝐵 ) 𝑧𝐶 ↔ ∃ 𝑦 ( 𝑦 ∈ ran ( 𝑥𝐴𝐵 ) ∧ 𝑧𝐶 ) )
4 2 ralrimiva ( 𝜑 → ∀ 𝑥𝐴 𝐵𝑉 )
5 eqid ( 𝑥𝐴𝐵 ) = ( 𝑥𝐴𝐵 )
6 5 elrnmptg ( ∀ 𝑥𝐴 𝐵𝑉 → ( 𝑦 ∈ ran ( 𝑥𝐴𝐵 ) ↔ ∃ 𝑥𝐴 𝑦 = 𝐵 ) )
7 4 6 syl ( 𝜑 → ( 𝑦 ∈ ran ( 𝑥𝐴𝐵 ) ↔ ∃ 𝑥𝐴 𝑦 = 𝐵 ) )
8 7 anbi1d ( 𝜑 → ( ( 𝑦 ∈ ran ( 𝑥𝐴𝐵 ) ∧ 𝑧𝐶 ) ↔ ( ∃ 𝑥𝐴 𝑦 = 𝐵𝑧𝐶 ) ) )
9 8 exbidv ( 𝜑 → ( ∃ 𝑦 ( 𝑦 ∈ ran ( 𝑥𝐴𝐵 ) ∧ 𝑧𝐶 ) ↔ ∃ 𝑦 ( ∃ 𝑥𝐴 𝑦 = 𝐵𝑧𝐶 ) ) )
10 r19.41v ( ∃ 𝑥𝐴 ( 𝑦 = 𝐵𝑧𝐶 ) ↔ ( ∃ 𝑥𝐴 𝑦 = 𝐵𝑧𝐶 ) )
11 1 eleq2d ( 𝑦 = 𝐵 → ( 𝑧𝐶𝑧𝐷 ) )
12 11 biimpa ( ( 𝑦 = 𝐵𝑧𝐶 ) → 𝑧𝐷 )
13 12 reximi ( ∃ 𝑥𝐴 ( 𝑦 = 𝐵𝑧𝐶 ) → ∃ 𝑥𝐴 𝑧𝐷 )
14 10 13 sylbir ( ( ∃ 𝑥𝐴 𝑦 = 𝐵𝑧𝐶 ) → ∃ 𝑥𝐴 𝑧𝐷 )
15 14 exlimiv ( ∃ 𝑦 ( ∃ 𝑥𝐴 𝑦 = 𝐵𝑧𝐶 ) → ∃ 𝑥𝐴 𝑧𝐷 )
16 9 15 syl6bi ( 𝜑 → ( ∃ 𝑦 ( 𝑦 ∈ ran ( 𝑥𝐴𝐵 ) ∧ 𝑧𝐶 ) → ∃ 𝑥𝐴 𝑧𝐷 ) )
17 3 16 syl5bi ( 𝜑 → ( ∃ 𝑦 ∈ ran ( 𝑥𝐴𝐵 ) 𝑧𝐶 → ∃ 𝑥𝐴 𝑧𝐷 ) )
18 17 ss2abdv ( 𝜑 → { 𝑧 ∣ ∃ 𝑦 ∈ ran ( 𝑥𝐴𝐵 ) 𝑧𝐶 } ⊆ { 𝑧 ∣ ∃ 𝑥𝐴 𝑧𝐷 } )
19 df-iun 𝑦 ∈ ran ( 𝑥𝐴𝐵 ) 𝐶 = { 𝑧 ∣ ∃ 𝑦 ∈ ran ( 𝑥𝐴𝐵 ) 𝑧𝐶 }
20 df-iun 𝑥𝐴 𝐷 = { 𝑧 ∣ ∃ 𝑥𝐴 𝑧𝐷 }
21 18 19 20 3sstr4g ( 𝜑 𝑦 ∈ ran ( 𝑥𝐴𝐵 ) 𝐶 𝑥𝐴 𝐷 )