Step |
Hyp |
Ref |
Expression |
1 |
|
iunrnmptss.1 |
⊢ ( 𝑦 = 𝐵 → 𝐶 = 𝐷 ) |
2 |
|
iunrnmptss.2 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐵 ∈ 𝑉 ) |
3 |
|
df-rex |
⊢ ( ∃ 𝑦 ∈ ran ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) 𝑧 ∈ 𝐶 ↔ ∃ 𝑦 ( 𝑦 ∈ ran ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ∧ 𝑧 ∈ 𝐶 ) ) |
4 |
2
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝐴 𝐵 ∈ 𝑉 ) |
5 |
|
eqid |
⊢ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) = ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) |
6 |
5
|
elrnmptg |
⊢ ( ∀ 𝑥 ∈ 𝐴 𝐵 ∈ 𝑉 → ( 𝑦 ∈ ran ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ↔ ∃ 𝑥 ∈ 𝐴 𝑦 = 𝐵 ) ) |
7 |
4 6
|
syl |
⊢ ( 𝜑 → ( 𝑦 ∈ ran ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ↔ ∃ 𝑥 ∈ 𝐴 𝑦 = 𝐵 ) ) |
8 |
7
|
anbi1d |
⊢ ( 𝜑 → ( ( 𝑦 ∈ ran ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ∧ 𝑧 ∈ 𝐶 ) ↔ ( ∃ 𝑥 ∈ 𝐴 𝑦 = 𝐵 ∧ 𝑧 ∈ 𝐶 ) ) ) |
9 |
8
|
exbidv |
⊢ ( 𝜑 → ( ∃ 𝑦 ( 𝑦 ∈ ran ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ∧ 𝑧 ∈ 𝐶 ) ↔ ∃ 𝑦 ( ∃ 𝑥 ∈ 𝐴 𝑦 = 𝐵 ∧ 𝑧 ∈ 𝐶 ) ) ) |
10 |
|
r19.41v |
⊢ ( ∃ 𝑥 ∈ 𝐴 ( 𝑦 = 𝐵 ∧ 𝑧 ∈ 𝐶 ) ↔ ( ∃ 𝑥 ∈ 𝐴 𝑦 = 𝐵 ∧ 𝑧 ∈ 𝐶 ) ) |
11 |
1
|
eleq2d |
⊢ ( 𝑦 = 𝐵 → ( 𝑧 ∈ 𝐶 ↔ 𝑧 ∈ 𝐷 ) ) |
12 |
11
|
biimpa |
⊢ ( ( 𝑦 = 𝐵 ∧ 𝑧 ∈ 𝐶 ) → 𝑧 ∈ 𝐷 ) |
13 |
12
|
reximi |
⊢ ( ∃ 𝑥 ∈ 𝐴 ( 𝑦 = 𝐵 ∧ 𝑧 ∈ 𝐶 ) → ∃ 𝑥 ∈ 𝐴 𝑧 ∈ 𝐷 ) |
14 |
10 13
|
sylbir |
⊢ ( ( ∃ 𝑥 ∈ 𝐴 𝑦 = 𝐵 ∧ 𝑧 ∈ 𝐶 ) → ∃ 𝑥 ∈ 𝐴 𝑧 ∈ 𝐷 ) |
15 |
14
|
exlimiv |
⊢ ( ∃ 𝑦 ( ∃ 𝑥 ∈ 𝐴 𝑦 = 𝐵 ∧ 𝑧 ∈ 𝐶 ) → ∃ 𝑥 ∈ 𝐴 𝑧 ∈ 𝐷 ) |
16 |
9 15
|
syl6bi |
⊢ ( 𝜑 → ( ∃ 𝑦 ( 𝑦 ∈ ran ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ∧ 𝑧 ∈ 𝐶 ) → ∃ 𝑥 ∈ 𝐴 𝑧 ∈ 𝐷 ) ) |
17 |
3 16
|
syl5bi |
⊢ ( 𝜑 → ( ∃ 𝑦 ∈ ran ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) 𝑧 ∈ 𝐶 → ∃ 𝑥 ∈ 𝐴 𝑧 ∈ 𝐷 ) ) |
18 |
17
|
ss2abdv |
⊢ ( 𝜑 → { 𝑧 ∣ ∃ 𝑦 ∈ ran ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) 𝑧 ∈ 𝐶 } ⊆ { 𝑧 ∣ ∃ 𝑥 ∈ 𝐴 𝑧 ∈ 𝐷 } ) |
19 |
|
df-iun |
⊢ ∪ 𝑦 ∈ ran ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) 𝐶 = { 𝑧 ∣ ∃ 𝑦 ∈ ran ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) 𝑧 ∈ 𝐶 } |
20 |
|
df-iun |
⊢ ∪ 𝑥 ∈ 𝐴 𝐷 = { 𝑧 ∣ ∃ 𝑥 ∈ 𝐴 𝑧 ∈ 𝐷 } |
21 |
18 19 20
|
3sstr4g |
⊢ ( 𝜑 → ∪ 𝑦 ∈ ran ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) 𝐶 ⊆ ∪ 𝑥 ∈ 𝐴 𝐷 ) |