Metamath Proof Explorer


Theorem iunxpf

Description: Indexed union on a Cartesian product equals a double indexed union. The hypothesis specifies an implicit substitution. (Contributed by NM, 19-Dec-2008)

Ref Expression
Hypotheses iunxpf.1 _yC
iunxpf.2 _zC
iunxpf.3 _xD
iunxpf.4 x=yzC=D
Assertion iunxpf xA×BC=yAzBD

Proof

Step Hyp Ref Expression
1 iunxpf.1 _yC
2 iunxpf.2 _zC
3 iunxpf.3 _xD
4 iunxpf.4 x=yzC=D
5 1 nfcri ywC
6 2 nfcri zwC
7 3 nfcri xwD
8 4 eleq2d x=yzwCwD
9 5 6 7 8 rexxpf xA×BwCyAzBwD
10 eliun wxA×BCxA×BwC
11 eliun wyAzBDyAwzBD
12 eliun wzBDzBwD
13 12 rexbii yAwzBDyAzBwD
14 11 13 bitri wyAzBDyAzBwD
15 9 10 14 3bitr4i wxA×BCwyAzBD
16 15 eqriv xA×BC=yAzBD