Metamath Proof Explorer


Theorem ixpexg

Description: The existence of an infinite Cartesian product. x is normally a free-variable parameter in B . Remark in Enderton p. 54. (Contributed by NM, 28-Sep-2006) (Revised by Mario Carneiro, 25-Jan-2015)

Ref Expression
Assertion ixpexg xABVxABV

Proof

Step Hyp Ref Expression
1 uniixp xABA×xAB
2 iunexg AVxABVxABV
3 xpexg AVxABVA×xABV
4 2 3 syldan AVxABVA×xABV
5 ssexg xABA×xABA×xABVxABV
6 1 4 5 sylancr AVxABVxABV
7 uniexb xABVxABV
8 6 7 sylibr AVxABVxABV
9 ixpprc ¬AVxAB=
10 0ex V
11 9 10 eqeltrdi ¬AVxABV
12 11 adantr ¬AVxABVxABV
13 8 12 pm2.61ian xABVxABV