Metamath Proof Explorer


Theorem jm2.27dlem2

Description: Lemma for rmydioph . This theorem is used along with the next three to efficiently infer steps like 7 e. ( 1 ... ; 1 0 ) . (Contributed by Stefan O'Rear, 11-Oct-2014)

Ref Expression
Hypotheses jm2.27dlem2.1 A 1 B
jm2.27dlem2.2 C = B + 1
jm2.27dlem2.3 B
Assertion jm2.27dlem2 A 1 C

Proof

Step Hyp Ref Expression
1 jm2.27dlem2.1 A 1 B
2 jm2.27dlem2.2 C = B + 1
3 jm2.27dlem2.3 B
4 elfzelz A 1 B A
5 1 4 ax-mp A
6 elfzle1 A 1 B 1 A
7 1 6 ax-mp 1 A
8 5 zrei A
9 3 nnrei B
10 elfzle2 A 1 B A B
11 1 10 ax-mp A B
12 letrp1 A B A B A B + 1
13 8 9 11 12 mp3an A B + 1
14 13 2 breqtrri A C
15 1z 1
16 nnz B B
17 peano2z B B + 1
18 3 16 17 mp2b B + 1
19 2 18 eqeltri C
20 elfz1 1 C A 1 C A 1 A A C
21 15 19 20 mp2an A 1 C A 1 A A C
22 5 7 14 21 mpbir3an A 1 C