Metamath Proof Explorer


Theorem kerlidl

Description: The kernel of a ring homomorphism is an ideal. (Contributed by Thierry Arnoux, 1-Jul-2024)

Ref Expression
Hypotheses kerlidl.i I=LIdealR
kerlidl.1 0˙=0S
Assertion kerlidl FRRingHomSF-10˙I

Proof

Step Hyp Ref Expression
1 kerlidl.i I=LIdealR
2 kerlidl.1 0˙=0S
3 rhmrcl2 FRRingHomSSRing
4 eqid LIdealS=LIdealS
5 4 2 lidl0 SRing0˙LIdealS
6 3 5 syl FRRingHomS0˙LIdealS
7 1 rhmpreimaidl FRRingHomS0˙LIdealSF-10˙I
8 6 7 mpdan FRRingHomSF-10˙I