Metamath Proof Explorer


Theorem kmlem15

Description: Lemma for 5-quantifier AC of Kurt Maes, Th. 4, part of 5 <=> 4. (Contributed by NM, 4-Apr-2004)

Ref Expression
Hypotheses kmlem14.1 φzyvxyvzv
kmlem14.2 ψzxvzvyuzuyu=v
kmlem14.3 χzx∃!vvzy
Assertion kmlem15 ¬yxχzvu¬yxψ

Proof

Step Hyp Ref Expression
1 kmlem14.1 φzyvxyvzv
2 kmlem14.2 ψzxvzvyuzuyu=v
3 kmlem14.3 χzx∃!vvzy
4 nfv uvzy
5 4 eu1 ∃!vvzyvvzyuuvvzyv=u
6 elin vzyvzvy
7 clelsb1 uvvzyuzy
8 elin uzyuzuy
9 7 8 bitri uvvzyuzuy
10 equcom v=uu=v
11 9 10 imbi12i uvvzyv=uuzuyu=v
12 11 albii uuvvzyv=uuuzuyu=v
13 6 12 anbi12i vzyuuvvzyv=uvzvyuuzuyu=v
14 19.28v uvzvyuzuyu=vvzvyuuzuyu=v
15 13 14 bitr4i vzyuuvvzyv=uuvzvyuzuyu=v
16 15 exbii vvzyuuvvzyv=uvuvzvyuzuyu=v
17 5 16 bitri ∃!vvzyvuvzvyuzuyu=v
18 17 ralbii zx∃!vvzyzxvuvzvyuzuyu=v
19 df-ral zxvuvzvyuzuyu=vzzxvuvzvyuzuyu=v
20 2 albii uψuzxvzvyuzuyu=v
21 19.21v uzxvzvyuzuyu=vzxuvzvyuzuyu=v
22 20 21 bitri uψzxuvzvyuzuyu=v
23 22 exbii vuψvzxuvzvyuzuyu=v
24 19.37v vzxuvzvyuzuyu=vzxvuvzvyuzuyu=v
25 23 24 bitri vuψzxvuvzvyuzuyu=v
26 25 albii zvuψzzxvuvzvyuzuyu=v
27 19 26 bitr4i zxvuvzvyuzuyu=vzvuψ
28 3 18 27 3bitri χzvuψ
29 28 anbi2i ¬yxχ¬yxzvuψ
30 19.28v z¬yxvuψ¬yxzvuψ
31 19.28v u¬yxψ¬yxuψ
32 31 exbii vu¬yxψv¬yxuψ
33 19.42v v¬yxuψ¬yxvuψ
34 32 33 bitr2i ¬yxvuψvu¬yxψ
35 34 albii z¬yxvuψzvu¬yxψ
36 29 30 35 3bitr2i ¬yxχzvu¬yxψ