Metamath Proof Explorer


Theorem kmlem15

Description: Lemma for 5-quantifier AC of Kurt Maes, Th. 4, part of 5 <=> 4. (Contributed by NM, 4-Apr-2004)

Ref Expression
Hypotheses kmlem14.1 ( 𝜑 ↔ ( 𝑧𝑦 → ( ( 𝑣𝑥𝑦𝑣 ) ∧ 𝑧𝑣 ) ) )
kmlem14.2 ( 𝜓 ↔ ( 𝑧𝑥 → ( ( 𝑣𝑧𝑣𝑦 ) ∧ ( ( 𝑢𝑧𝑢𝑦 ) → 𝑢 = 𝑣 ) ) ) )
kmlem14.3 ( 𝜒 ↔ ∀ 𝑧𝑥 ∃! 𝑣 𝑣 ∈ ( 𝑧𝑦 ) )
Assertion kmlem15 ( ( ¬ 𝑦𝑥𝜒 ) ↔ ∀ 𝑧𝑣𝑢 ( ¬ 𝑦𝑥𝜓 ) )

Proof

Step Hyp Ref Expression
1 kmlem14.1 ( 𝜑 ↔ ( 𝑧𝑦 → ( ( 𝑣𝑥𝑦𝑣 ) ∧ 𝑧𝑣 ) ) )
2 kmlem14.2 ( 𝜓 ↔ ( 𝑧𝑥 → ( ( 𝑣𝑧𝑣𝑦 ) ∧ ( ( 𝑢𝑧𝑢𝑦 ) → 𝑢 = 𝑣 ) ) ) )
3 kmlem14.3 ( 𝜒 ↔ ∀ 𝑧𝑥 ∃! 𝑣 𝑣 ∈ ( 𝑧𝑦 ) )
4 nfv 𝑢 𝑣 ∈ ( 𝑧𝑦 )
5 4 eu1 ( ∃! 𝑣 𝑣 ∈ ( 𝑧𝑦 ) ↔ ∃ 𝑣 ( 𝑣 ∈ ( 𝑧𝑦 ) ∧ ∀ 𝑢 ( [ 𝑢 / 𝑣 ] 𝑣 ∈ ( 𝑧𝑦 ) → 𝑣 = 𝑢 ) ) )
6 elin ( 𝑣 ∈ ( 𝑧𝑦 ) ↔ ( 𝑣𝑧𝑣𝑦 ) )
7 clelsb3 ( [ 𝑢 / 𝑣 ] 𝑣 ∈ ( 𝑧𝑦 ) ↔ 𝑢 ∈ ( 𝑧𝑦 ) )
8 elin ( 𝑢 ∈ ( 𝑧𝑦 ) ↔ ( 𝑢𝑧𝑢𝑦 ) )
9 7 8 bitri ( [ 𝑢 / 𝑣 ] 𝑣 ∈ ( 𝑧𝑦 ) ↔ ( 𝑢𝑧𝑢𝑦 ) )
10 equcom ( 𝑣 = 𝑢𝑢 = 𝑣 )
11 9 10 imbi12i ( ( [ 𝑢 / 𝑣 ] 𝑣 ∈ ( 𝑧𝑦 ) → 𝑣 = 𝑢 ) ↔ ( ( 𝑢𝑧𝑢𝑦 ) → 𝑢 = 𝑣 ) )
12 11 albii ( ∀ 𝑢 ( [ 𝑢 / 𝑣 ] 𝑣 ∈ ( 𝑧𝑦 ) → 𝑣 = 𝑢 ) ↔ ∀ 𝑢 ( ( 𝑢𝑧𝑢𝑦 ) → 𝑢 = 𝑣 ) )
13 6 12 anbi12i ( ( 𝑣 ∈ ( 𝑧𝑦 ) ∧ ∀ 𝑢 ( [ 𝑢 / 𝑣 ] 𝑣 ∈ ( 𝑧𝑦 ) → 𝑣 = 𝑢 ) ) ↔ ( ( 𝑣𝑧𝑣𝑦 ) ∧ ∀ 𝑢 ( ( 𝑢𝑧𝑢𝑦 ) → 𝑢 = 𝑣 ) ) )
14 19.28v ( ∀ 𝑢 ( ( 𝑣𝑧𝑣𝑦 ) ∧ ( ( 𝑢𝑧𝑢𝑦 ) → 𝑢 = 𝑣 ) ) ↔ ( ( 𝑣𝑧𝑣𝑦 ) ∧ ∀ 𝑢 ( ( 𝑢𝑧𝑢𝑦 ) → 𝑢 = 𝑣 ) ) )
15 13 14 bitr4i ( ( 𝑣 ∈ ( 𝑧𝑦 ) ∧ ∀ 𝑢 ( [ 𝑢 / 𝑣 ] 𝑣 ∈ ( 𝑧𝑦 ) → 𝑣 = 𝑢 ) ) ↔ ∀ 𝑢 ( ( 𝑣𝑧𝑣𝑦 ) ∧ ( ( 𝑢𝑧𝑢𝑦 ) → 𝑢 = 𝑣 ) ) )
16 15 exbii ( ∃ 𝑣 ( 𝑣 ∈ ( 𝑧𝑦 ) ∧ ∀ 𝑢 ( [ 𝑢 / 𝑣 ] 𝑣 ∈ ( 𝑧𝑦 ) → 𝑣 = 𝑢 ) ) ↔ ∃ 𝑣𝑢 ( ( 𝑣𝑧𝑣𝑦 ) ∧ ( ( 𝑢𝑧𝑢𝑦 ) → 𝑢 = 𝑣 ) ) )
17 5 16 bitri ( ∃! 𝑣 𝑣 ∈ ( 𝑧𝑦 ) ↔ ∃ 𝑣𝑢 ( ( 𝑣𝑧𝑣𝑦 ) ∧ ( ( 𝑢𝑧𝑢𝑦 ) → 𝑢 = 𝑣 ) ) )
18 17 ralbii ( ∀ 𝑧𝑥 ∃! 𝑣 𝑣 ∈ ( 𝑧𝑦 ) ↔ ∀ 𝑧𝑥𝑣𝑢 ( ( 𝑣𝑧𝑣𝑦 ) ∧ ( ( 𝑢𝑧𝑢𝑦 ) → 𝑢 = 𝑣 ) ) )
19 df-ral ( ∀ 𝑧𝑥𝑣𝑢 ( ( 𝑣𝑧𝑣𝑦 ) ∧ ( ( 𝑢𝑧𝑢𝑦 ) → 𝑢 = 𝑣 ) ) ↔ ∀ 𝑧 ( 𝑧𝑥 → ∃ 𝑣𝑢 ( ( 𝑣𝑧𝑣𝑦 ) ∧ ( ( 𝑢𝑧𝑢𝑦 ) → 𝑢 = 𝑣 ) ) ) )
20 2 albii ( ∀ 𝑢 𝜓 ↔ ∀ 𝑢 ( 𝑧𝑥 → ( ( 𝑣𝑧𝑣𝑦 ) ∧ ( ( 𝑢𝑧𝑢𝑦 ) → 𝑢 = 𝑣 ) ) ) )
21 19.21v ( ∀ 𝑢 ( 𝑧𝑥 → ( ( 𝑣𝑧𝑣𝑦 ) ∧ ( ( 𝑢𝑧𝑢𝑦 ) → 𝑢 = 𝑣 ) ) ) ↔ ( 𝑧𝑥 → ∀ 𝑢 ( ( 𝑣𝑧𝑣𝑦 ) ∧ ( ( 𝑢𝑧𝑢𝑦 ) → 𝑢 = 𝑣 ) ) ) )
22 20 21 bitri ( ∀ 𝑢 𝜓 ↔ ( 𝑧𝑥 → ∀ 𝑢 ( ( 𝑣𝑧𝑣𝑦 ) ∧ ( ( 𝑢𝑧𝑢𝑦 ) → 𝑢 = 𝑣 ) ) ) )
23 22 exbii ( ∃ 𝑣𝑢 𝜓 ↔ ∃ 𝑣 ( 𝑧𝑥 → ∀ 𝑢 ( ( 𝑣𝑧𝑣𝑦 ) ∧ ( ( 𝑢𝑧𝑢𝑦 ) → 𝑢 = 𝑣 ) ) ) )
24 19.37v ( ∃ 𝑣 ( 𝑧𝑥 → ∀ 𝑢 ( ( 𝑣𝑧𝑣𝑦 ) ∧ ( ( 𝑢𝑧𝑢𝑦 ) → 𝑢 = 𝑣 ) ) ) ↔ ( 𝑧𝑥 → ∃ 𝑣𝑢 ( ( 𝑣𝑧𝑣𝑦 ) ∧ ( ( 𝑢𝑧𝑢𝑦 ) → 𝑢 = 𝑣 ) ) ) )
25 23 24 bitri ( ∃ 𝑣𝑢 𝜓 ↔ ( 𝑧𝑥 → ∃ 𝑣𝑢 ( ( 𝑣𝑧𝑣𝑦 ) ∧ ( ( 𝑢𝑧𝑢𝑦 ) → 𝑢 = 𝑣 ) ) ) )
26 25 albii ( ∀ 𝑧𝑣𝑢 𝜓 ↔ ∀ 𝑧 ( 𝑧𝑥 → ∃ 𝑣𝑢 ( ( 𝑣𝑧𝑣𝑦 ) ∧ ( ( 𝑢𝑧𝑢𝑦 ) → 𝑢 = 𝑣 ) ) ) )
27 19 26 bitr4i ( ∀ 𝑧𝑥𝑣𝑢 ( ( 𝑣𝑧𝑣𝑦 ) ∧ ( ( 𝑢𝑧𝑢𝑦 ) → 𝑢 = 𝑣 ) ) ↔ ∀ 𝑧𝑣𝑢 𝜓 )
28 3 18 27 3bitri ( 𝜒 ↔ ∀ 𝑧𝑣𝑢 𝜓 )
29 28 anbi2i ( ( ¬ 𝑦𝑥𝜒 ) ↔ ( ¬ 𝑦𝑥 ∧ ∀ 𝑧𝑣𝑢 𝜓 ) )
30 19.28v ( ∀ 𝑧 ( ¬ 𝑦𝑥 ∧ ∃ 𝑣𝑢 𝜓 ) ↔ ( ¬ 𝑦𝑥 ∧ ∀ 𝑧𝑣𝑢 𝜓 ) )
31 19.28v ( ∀ 𝑢 ( ¬ 𝑦𝑥𝜓 ) ↔ ( ¬ 𝑦𝑥 ∧ ∀ 𝑢 𝜓 ) )
32 31 exbii ( ∃ 𝑣𝑢 ( ¬ 𝑦𝑥𝜓 ) ↔ ∃ 𝑣 ( ¬ 𝑦𝑥 ∧ ∀ 𝑢 𝜓 ) )
33 19.42v ( ∃ 𝑣 ( ¬ 𝑦𝑥 ∧ ∀ 𝑢 𝜓 ) ↔ ( ¬ 𝑦𝑥 ∧ ∃ 𝑣𝑢 𝜓 ) )
34 32 33 bitr2i ( ( ¬ 𝑦𝑥 ∧ ∃ 𝑣𝑢 𝜓 ) ↔ ∃ 𝑣𝑢 ( ¬ 𝑦𝑥𝜓 ) )
35 34 albii ( ∀ 𝑧 ( ¬ 𝑦𝑥 ∧ ∃ 𝑣𝑢 𝜓 ) ↔ ∀ 𝑧𝑣𝑢 ( ¬ 𝑦𝑥𝜓 ) )
36 29 30 35 3bitr2i ( ( ¬ 𝑦𝑥𝜒 ) ↔ ∀ 𝑧𝑣𝑢 ( ¬ 𝑦𝑥𝜓 ) )