Metamath Proof Explorer


Theorem konigsbergiedgw

Description: The indexed edges of the Königsberg graph G is a word over the pairs of vertices. (Contributed by AV, 28-Feb-2021)

Ref Expression
Hypotheses konigsberg.v V=03
konigsberg.e E=⟨“01020312122323”⟩
konigsberg.g G=VE
Assertion konigsbergiedgw EWordx𝒫V|x=2

Proof

Step Hyp Ref Expression
1 konigsberg.v V=03
2 konigsberg.e E=⟨“01020312122323”⟩
3 konigsberg.g G=VE
4 3nn0 30
5 0elfz 30003
6 4 5 ax-mp 003
7 1nn0 10
8 1le3 13
9 elfz2nn0 103103013
10 7 4 8 9 mpbir3an 103
11 0ne1 01
12 6 10 11 umgrbi 01x𝒫03|x=2
13 12 a1i 01x𝒫03|x=2
14 2nn0 20
15 2re 2
16 3re 3
17 2lt3 2<3
18 15 16 17 ltleii 23
19 elfz2nn0 203203023
20 14 4 18 19 mpbir3an 203
21 0ne2 02
22 6 20 21 umgrbi 02x𝒫03|x=2
23 22 a1i 02x𝒫03|x=2
24 nn0fz0 30303
25 4 24 mpbi 303
26 3ne0 30
27 26 necomi 03
28 6 25 27 umgrbi 03x𝒫03|x=2
29 28 a1i 03x𝒫03|x=2
30 1ne2 12
31 10 20 30 umgrbi 12x𝒫03|x=2
32 31 a1i 12x𝒫03|x=2
33 15 17 ltneii 23
34 20 25 33 umgrbi 23x𝒫03|x=2
35 34 a1i 23x𝒫03|x=2
36 13 23 29 32 32 35 35 s7cld ⟨“01020312122323”⟩Wordx𝒫03|x=2
37 36 mptru ⟨“01020312122323”⟩Wordx𝒫03|x=2
38 1 pweqi 𝒫V=𝒫03
39 38 rabeqi x𝒫V|x=2=x𝒫03|x=2
40 39 wrdeqi Wordx𝒫V|x=2=Wordx𝒫03|x=2
41 37 2 40 3eltr4i EWordx𝒫V|x=2