Metamath Proof Explorer


Theorem konigsbergssiedgw

Description: Each subset of the indexed edges of the Königsberg graph G is a word over the pairs of vertices. (Contributed by AV, 28-Feb-2021)

Ref Expression
Hypotheses konigsberg.v V = 0 3
konigsberg.e E = ⟨“ 0 1 0 2 0 3 1 2 1 2 2 3 2 3 ”⟩
konigsberg.g G = V E
Assertion konigsbergssiedgw A Word V B Word V E = A ++ B A Word x 𝒫 V | x 2

Proof

Step Hyp Ref Expression
1 konigsberg.v V = 0 3
2 konigsberg.e E = ⟨“ 0 1 0 2 0 3 1 2 1 2 2 3 2 3 ”⟩
3 konigsberg.g G = V E
4 1 2 3 konigsbergssiedgwpr A Word V B Word V E = A ++ B A Word x 𝒫 V | x = 2
5 wrdf A Word x 𝒫 V | x = 2 A : 0 ..^ A x 𝒫 V | x = 2
6 prprrab x 𝒫 V | x = 2 = x 𝒫 V | x = 2
7 2re 2
8 7 eqlei2 x = 2 x 2
9 8 a1i x 𝒫 V x = 2 x 2
10 9 ss2rabi x 𝒫 V | x = 2 x 𝒫 V | x 2
11 6 10 eqsstrri x 𝒫 V | x = 2 x 𝒫 V | x 2
12 fss A : 0 ..^ A x 𝒫 V | x = 2 x 𝒫 V | x = 2 x 𝒫 V | x 2 A : 0 ..^ A x 𝒫 V | x 2
13 11 12 mpan2 A : 0 ..^ A x 𝒫 V | x = 2 A : 0 ..^ A x 𝒫 V | x 2
14 iswrdb A Word x 𝒫 V | x 2 A : 0 ..^ A x 𝒫 V | x 2
15 13 14 sylibr A : 0 ..^ A x 𝒫 V | x = 2 A Word x 𝒫 V | x 2
16 4 5 15 3syl A Word V B Word V E = A ++ B A Word x 𝒫 V | x 2