Metamath Proof Explorer


Theorem lanrcl4

Description: The first component of a left Kan extension is a functor. (Contributed by Zhi Wang, 4-Nov-2025)

Ref Expression
Hypothesis lanrcl2.l No typesetting found for |- ( ph -> L ( F ( <. C , D >. Lan E ) X ) A ) with typecode |-
Assertion lanrcl4 φ L D Func E

Proof

Step Hyp Ref Expression
1 lanrcl2.l Could not format ( ph -> L ( F ( <. C , D >. Lan E ) X ) A ) : No typesetting found for |- ( ph -> L ( F ( <. C , D >. Lan E ) X ) A ) with typecode |-
2 df-br Could not format ( L ( F ( <. C , D >. Lan E ) X ) A <-> <. L , A >. e. ( F ( <. C , D >. Lan E ) X ) ) : No typesetting found for |- ( L ( F ( <. C , D >. Lan E ) X ) A <-> <. L , A >. e. ( F ( <. C , D >. Lan E ) X ) ) with typecode |-
3 1 2 sylib Could not format ( ph -> <. L , A >. e. ( F ( <. C , D >. Lan E ) X ) ) : No typesetting found for |- ( ph -> <. L , A >. e. ( F ( <. C , D >. Lan E ) X ) ) with typecode |-
4 eqid D FuncCat E = D FuncCat E
5 eqid C FuncCat E = C FuncCat E
6 eqid Could not format ( <. D , E >. -o.F F ) = ( <. D , E >. -o.F F ) : No typesetting found for |- ( <. D , E >. -o.F F ) = ( <. D , E >. -o.F F ) with typecode |-
7 4 5 6 islan Could not format ( <. L , A >. e. ( F ( <. C , D >. Lan E ) X ) -> <. L , A >. e. ( ( <. D , E >. -o.F F ) ( ( D FuncCat E ) UP ( C FuncCat E ) ) X ) ) : No typesetting found for |- ( <. L , A >. e. ( F ( <. C , D >. Lan E ) X ) -> <. L , A >. e. ( ( <. D , E >. -o.F F ) ( ( D FuncCat E ) UP ( C FuncCat E ) ) X ) ) with typecode |-
8 3 7 syl Could not format ( ph -> <. L , A >. e. ( ( <. D , E >. -o.F F ) ( ( D FuncCat E ) UP ( C FuncCat E ) ) X ) ) : No typesetting found for |- ( ph -> <. L , A >. e. ( ( <. D , E >. -o.F F ) ( ( D FuncCat E ) UP ( C FuncCat E ) ) X ) ) with typecode |-
9 df-br Could not format ( L ( ( <. D , E >. -o.F F ) ( ( D FuncCat E ) UP ( C FuncCat E ) ) X ) A <-> <. L , A >. e. ( ( <. D , E >. -o.F F ) ( ( D FuncCat E ) UP ( C FuncCat E ) ) X ) ) : No typesetting found for |- ( L ( ( <. D , E >. -o.F F ) ( ( D FuncCat E ) UP ( C FuncCat E ) ) X ) A <-> <. L , A >. e. ( ( <. D , E >. -o.F F ) ( ( D FuncCat E ) UP ( C FuncCat E ) ) X ) ) with typecode |-
10 8 9 sylibr Could not format ( ph -> L ( ( <. D , E >. -o.F F ) ( ( D FuncCat E ) UP ( C FuncCat E ) ) X ) A ) : No typesetting found for |- ( ph -> L ( ( <. D , E >. -o.F F ) ( ( D FuncCat E ) UP ( C FuncCat E ) ) X ) A ) with typecode |-
11 10 up1st2nd Could not format ( ph -> L ( <. ( 1st ` ( <. D , E >. -o.F F ) ) , ( 2nd ` ( <. D , E >. -o.F F ) ) >. ( ( D FuncCat E ) UP ( C FuncCat E ) ) X ) A ) : No typesetting found for |- ( ph -> L ( <. ( 1st ` ( <. D , E >. -o.F F ) ) , ( 2nd ` ( <. D , E >. -o.F F ) ) >. ( ( D FuncCat E ) UP ( C FuncCat E ) ) X ) A ) with typecode |-
12 4 fucbas D Func E = Base D FuncCat E
13 11 12 uprcl4 φ L D Func E