Metamath Proof Explorer


Theorem lanrcl5

Description: The second component of a left Kan extension is a natural transformation. (Contributed by Zhi Wang, 4-Nov-2025)

Ref Expression
Hypotheses lanrcl2.l No typesetting found for |- ( ph -> L ( F ( <. C , D >. Lan E ) X ) A ) with typecode |-
lanrcl5.n N = C Nat E
Assertion lanrcl5 φ A X N L func F

Proof

Step Hyp Ref Expression
1 lanrcl2.l Could not format ( ph -> L ( F ( <. C , D >. Lan E ) X ) A ) : No typesetting found for |- ( ph -> L ( F ( <. C , D >. Lan E ) X ) A ) with typecode |-
2 lanrcl5.n N = C Nat E
3 eqid D FuncCat E = D FuncCat E
4 eqid C FuncCat E = C FuncCat E
5 eqid Could not format ( <. D , E >. -o.F F ) = ( <. D , E >. -o.F F ) : No typesetting found for |- ( <. D , E >. -o.F F ) = ( <. D , E >. -o.F F ) with typecode |-
6 3 4 5 islan2 Could not format ( L ( F ( <. C , D >. Lan E ) X ) A -> L ( ( <. D , E >. -o.F F ) ( ( D FuncCat E ) UP ( C FuncCat E ) ) X ) A ) : No typesetting found for |- ( L ( F ( <. C , D >. Lan E ) X ) A -> L ( ( <. D , E >. -o.F F ) ( ( D FuncCat E ) UP ( C FuncCat E ) ) X ) A ) with typecode |-
7 1 6 syl Could not format ( ph -> L ( ( <. D , E >. -o.F F ) ( ( D FuncCat E ) UP ( C FuncCat E ) ) X ) A ) : No typesetting found for |- ( ph -> L ( ( <. D , E >. -o.F F ) ( ( D FuncCat E ) UP ( C FuncCat E ) ) X ) A ) with typecode |-
8 7 up1st2nd Could not format ( ph -> L ( <. ( 1st ` ( <. D , E >. -o.F F ) ) , ( 2nd ` ( <. D , E >. -o.F F ) ) >. ( ( D FuncCat E ) UP ( C FuncCat E ) ) X ) A ) : No typesetting found for |- ( ph -> L ( <. ( 1st ` ( <. D , E >. -o.F F ) ) , ( 2nd ` ( <. D , E >. -o.F F ) ) >. ( ( D FuncCat E ) UP ( C FuncCat E ) ) X ) A ) with typecode |-
9 4 2 fuchom N = Hom C FuncCat E
10 8 9 uprcl5 Could not format ( ph -> A e. ( X N ( ( 1st ` ( <. D , E >. -o.F F ) ) ` L ) ) ) : No typesetting found for |- ( ph -> A e. ( X N ( ( 1st ` ( <. D , E >. -o.F F ) ) ` L ) ) ) with typecode |-
11 1 lanrcl4 φ L D Func E
12 eqidd Could not format ( ph -> ( 1st ` ( <. D , E >. -o.F F ) ) = ( 1st ` ( <. D , E >. -o.F F ) ) ) : No typesetting found for |- ( ph -> ( 1st ` ( <. D , E >. -o.F F ) ) = ( 1st ` ( <. D , E >. -o.F F ) ) ) with typecode |-
13 11 12 prcof1 Could not format ( ph -> ( ( 1st ` ( <. D , E >. -o.F F ) ) ` L ) = ( L o.func F ) ) : No typesetting found for |- ( ph -> ( ( 1st ` ( <. D , E >. -o.F F ) ) ` L ) = ( L o.func F ) ) with typecode |-
14 13 oveq2d Could not format ( ph -> ( X N ( ( 1st ` ( <. D , E >. -o.F F ) ) ` L ) ) = ( X N ( L o.func F ) ) ) : No typesetting found for |- ( ph -> ( X N ( ( 1st ` ( <. D , E >. -o.F F ) ) ` L ) ) = ( X N ( L o.func F ) ) ) with typecode |-
15 10 14 eleqtrd φ A X N L func F