| Step |
Hyp |
Ref |
Expression |
| 1 |
|
lanrcl2.l |
|- ( ph -> L ( F ( <. C , D >. Lan E ) X ) A ) |
| 2 |
|
lanrcl5.n |
|- N = ( C Nat E ) |
| 3 |
|
eqid |
|- ( D FuncCat E ) = ( D FuncCat E ) |
| 4 |
|
eqid |
|- ( C FuncCat E ) = ( C FuncCat E ) |
| 5 |
|
eqid |
|- ( <. D , E >. -o.F F ) = ( <. D , E >. -o.F F ) |
| 6 |
3 4 5
|
islan2 |
|- ( L ( F ( <. C , D >. Lan E ) X ) A -> L ( ( <. D , E >. -o.F F ) ( ( D FuncCat E ) UP ( C FuncCat E ) ) X ) A ) |
| 7 |
1 6
|
syl |
|- ( ph -> L ( ( <. D , E >. -o.F F ) ( ( D FuncCat E ) UP ( C FuncCat E ) ) X ) A ) |
| 8 |
7
|
up1st2nd |
|- ( ph -> L ( <. ( 1st ` ( <. D , E >. -o.F F ) ) , ( 2nd ` ( <. D , E >. -o.F F ) ) >. ( ( D FuncCat E ) UP ( C FuncCat E ) ) X ) A ) |
| 9 |
4 2
|
fuchom |
|- N = ( Hom ` ( C FuncCat E ) ) |
| 10 |
8 9
|
uprcl5 |
|- ( ph -> A e. ( X N ( ( 1st ` ( <. D , E >. -o.F F ) ) ` L ) ) ) |
| 11 |
1
|
lanrcl4 |
|- ( ph -> L e. ( D Func E ) ) |
| 12 |
|
eqidd |
|- ( ph -> ( 1st ` ( <. D , E >. -o.F F ) ) = ( 1st ` ( <. D , E >. -o.F F ) ) ) |
| 13 |
11 12
|
prcof1 |
|- ( ph -> ( ( 1st ` ( <. D , E >. -o.F F ) ) ` L ) = ( L o.func F ) ) |
| 14 |
13
|
oveq2d |
|- ( ph -> ( X N ( ( 1st ` ( <. D , E >. -o.F F ) ) ` L ) ) = ( X N ( L o.func F ) ) ) |
| 15 |
10 14
|
eleqtrd |
|- ( ph -> A e. ( X N ( L o.func F ) ) ) |