Metamath Proof Explorer


Theorem lanrcl5

Description: The second component of a left Kan extension is a natural transformation. (Contributed by Zhi Wang, 4-Nov-2025)

Ref Expression
Hypotheses lanrcl2.l ( 𝜑𝐿 ( 𝐹 ( ⟨ 𝐶 , 𝐷 ⟩ Lan 𝐸 ) 𝑋 ) 𝐴 )
lanrcl5.n 𝑁 = ( 𝐶 Nat 𝐸 )
Assertion lanrcl5 ( 𝜑𝐴 ∈ ( 𝑋 𝑁 ( 𝐿func 𝐹 ) ) )

Proof

Step Hyp Ref Expression
1 lanrcl2.l ( 𝜑𝐿 ( 𝐹 ( ⟨ 𝐶 , 𝐷 ⟩ Lan 𝐸 ) 𝑋 ) 𝐴 )
2 lanrcl5.n 𝑁 = ( 𝐶 Nat 𝐸 )
3 eqid ( 𝐷 FuncCat 𝐸 ) = ( 𝐷 FuncCat 𝐸 )
4 eqid ( 𝐶 FuncCat 𝐸 ) = ( 𝐶 FuncCat 𝐸 )
5 eqid ( ⟨ 𝐷 , 𝐸 ⟩ −∘F 𝐹 ) = ( ⟨ 𝐷 , 𝐸 ⟩ −∘F 𝐹 )
6 3 4 5 islan2 ( 𝐿 ( 𝐹 ( ⟨ 𝐶 , 𝐷 ⟩ Lan 𝐸 ) 𝑋 ) 𝐴𝐿 ( ( ⟨ 𝐷 , 𝐸 ⟩ −∘F 𝐹 ) ( ( 𝐷 FuncCat 𝐸 ) UP ( 𝐶 FuncCat 𝐸 ) ) 𝑋 ) 𝐴 )
7 1 6 syl ( 𝜑𝐿 ( ( ⟨ 𝐷 , 𝐸 ⟩ −∘F 𝐹 ) ( ( 𝐷 FuncCat 𝐸 ) UP ( 𝐶 FuncCat 𝐸 ) ) 𝑋 ) 𝐴 )
8 7 up1st2nd ( 𝜑𝐿 ( ⟨ ( 1st ‘ ( ⟨ 𝐷 , 𝐸 ⟩ −∘F 𝐹 ) ) , ( 2nd ‘ ( ⟨ 𝐷 , 𝐸 ⟩ −∘F 𝐹 ) ) ⟩ ( ( 𝐷 FuncCat 𝐸 ) UP ( 𝐶 FuncCat 𝐸 ) ) 𝑋 ) 𝐴 )
9 4 2 fuchom 𝑁 = ( Hom ‘ ( 𝐶 FuncCat 𝐸 ) )
10 8 9 uprcl5 ( 𝜑𝐴 ∈ ( 𝑋 𝑁 ( ( 1st ‘ ( ⟨ 𝐷 , 𝐸 ⟩ −∘F 𝐹 ) ) ‘ 𝐿 ) ) )
11 1 lanrcl4 ( 𝜑𝐿 ∈ ( 𝐷 Func 𝐸 ) )
12 eqidd ( 𝜑 → ( 1st ‘ ( ⟨ 𝐷 , 𝐸 ⟩ −∘F 𝐹 ) ) = ( 1st ‘ ( ⟨ 𝐷 , 𝐸 ⟩ −∘F 𝐹 ) ) )
13 11 12 prcof1 ( 𝜑 → ( ( 1st ‘ ( ⟨ 𝐷 , 𝐸 ⟩ −∘F 𝐹 ) ) ‘ 𝐿 ) = ( 𝐿func 𝐹 ) )
14 13 oveq2d ( 𝜑 → ( 𝑋 𝑁 ( ( 1st ‘ ( ⟨ 𝐷 , 𝐸 ⟩ −∘F 𝐹 ) ) ‘ 𝐿 ) ) = ( 𝑋 𝑁 ( 𝐿func 𝐹 ) ) )
15 10 14 eleqtrd ( 𝜑𝐴 ∈ ( 𝑋 𝑁 ( 𝐿func 𝐹 ) ) )