| Step |
Hyp |
Ref |
Expression |
| 1 |
|
lanrcl2.l |
⊢ ( 𝜑 → 𝐿 ( 𝐹 ( 〈 𝐶 , 𝐷 〉 Lan 𝐸 ) 𝑋 ) 𝐴 ) |
| 2 |
|
lanrcl5.n |
⊢ 𝑁 = ( 𝐶 Nat 𝐸 ) |
| 3 |
|
eqid |
⊢ ( 𝐷 FuncCat 𝐸 ) = ( 𝐷 FuncCat 𝐸 ) |
| 4 |
|
eqid |
⊢ ( 𝐶 FuncCat 𝐸 ) = ( 𝐶 FuncCat 𝐸 ) |
| 5 |
|
eqid |
⊢ ( 〈 𝐷 , 𝐸 〉 −∘F 𝐹 ) = ( 〈 𝐷 , 𝐸 〉 −∘F 𝐹 ) |
| 6 |
3 4 5
|
islan2 |
⊢ ( 𝐿 ( 𝐹 ( 〈 𝐶 , 𝐷 〉 Lan 𝐸 ) 𝑋 ) 𝐴 → 𝐿 ( ( 〈 𝐷 , 𝐸 〉 −∘F 𝐹 ) ( ( 𝐷 FuncCat 𝐸 ) UP ( 𝐶 FuncCat 𝐸 ) ) 𝑋 ) 𝐴 ) |
| 7 |
1 6
|
syl |
⊢ ( 𝜑 → 𝐿 ( ( 〈 𝐷 , 𝐸 〉 −∘F 𝐹 ) ( ( 𝐷 FuncCat 𝐸 ) UP ( 𝐶 FuncCat 𝐸 ) ) 𝑋 ) 𝐴 ) |
| 8 |
7
|
up1st2nd |
⊢ ( 𝜑 → 𝐿 ( 〈 ( 1st ‘ ( 〈 𝐷 , 𝐸 〉 −∘F 𝐹 ) ) , ( 2nd ‘ ( 〈 𝐷 , 𝐸 〉 −∘F 𝐹 ) ) 〉 ( ( 𝐷 FuncCat 𝐸 ) UP ( 𝐶 FuncCat 𝐸 ) ) 𝑋 ) 𝐴 ) |
| 9 |
4 2
|
fuchom |
⊢ 𝑁 = ( Hom ‘ ( 𝐶 FuncCat 𝐸 ) ) |
| 10 |
8 9
|
uprcl5 |
⊢ ( 𝜑 → 𝐴 ∈ ( 𝑋 𝑁 ( ( 1st ‘ ( 〈 𝐷 , 𝐸 〉 −∘F 𝐹 ) ) ‘ 𝐿 ) ) ) |
| 11 |
1
|
lanrcl4 |
⊢ ( 𝜑 → 𝐿 ∈ ( 𝐷 Func 𝐸 ) ) |
| 12 |
|
eqidd |
⊢ ( 𝜑 → ( 1st ‘ ( 〈 𝐷 , 𝐸 〉 −∘F 𝐹 ) ) = ( 1st ‘ ( 〈 𝐷 , 𝐸 〉 −∘F 𝐹 ) ) ) |
| 13 |
11 12
|
prcof1 |
⊢ ( 𝜑 → ( ( 1st ‘ ( 〈 𝐷 , 𝐸 〉 −∘F 𝐹 ) ) ‘ 𝐿 ) = ( 𝐿 ∘func 𝐹 ) ) |
| 14 |
13
|
oveq2d |
⊢ ( 𝜑 → ( 𝑋 𝑁 ( ( 1st ‘ ( 〈 𝐷 , 𝐸 〉 −∘F 𝐹 ) ) ‘ 𝐿 ) ) = ( 𝑋 𝑁 ( 𝐿 ∘func 𝐹 ) ) ) |
| 15 |
10 14
|
eleqtrd |
⊢ ( 𝜑 → 𝐴 ∈ ( 𝑋 𝑁 ( 𝐿 ∘func 𝐹 ) ) ) |