Metamath Proof Explorer


Theorem lanrcl4

Description: The first component of a left Kan extension is a functor. (Contributed by Zhi Wang, 4-Nov-2025)

Ref Expression
Hypothesis lanrcl2.l ( 𝜑𝐿 ( 𝐹 ( ⟨ 𝐶 , 𝐷 ⟩ Lan 𝐸 ) 𝑋 ) 𝐴 )
Assertion lanrcl4 ( 𝜑𝐿 ∈ ( 𝐷 Func 𝐸 ) )

Proof

Step Hyp Ref Expression
1 lanrcl2.l ( 𝜑𝐿 ( 𝐹 ( ⟨ 𝐶 , 𝐷 ⟩ Lan 𝐸 ) 𝑋 ) 𝐴 )
2 df-br ( 𝐿 ( 𝐹 ( ⟨ 𝐶 , 𝐷 ⟩ Lan 𝐸 ) 𝑋 ) 𝐴 ↔ ⟨ 𝐿 , 𝐴 ⟩ ∈ ( 𝐹 ( ⟨ 𝐶 , 𝐷 ⟩ Lan 𝐸 ) 𝑋 ) )
3 1 2 sylib ( 𝜑 → ⟨ 𝐿 , 𝐴 ⟩ ∈ ( 𝐹 ( ⟨ 𝐶 , 𝐷 ⟩ Lan 𝐸 ) 𝑋 ) )
4 eqid ( 𝐷 FuncCat 𝐸 ) = ( 𝐷 FuncCat 𝐸 )
5 eqid ( 𝐶 FuncCat 𝐸 ) = ( 𝐶 FuncCat 𝐸 )
6 eqid ( ⟨ 𝐷 , 𝐸 ⟩ −∘F 𝐹 ) = ( ⟨ 𝐷 , 𝐸 ⟩ −∘F 𝐹 )
7 4 5 6 islan ( ⟨ 𝐿 , 𝐴 ⟩ ∈ ( 𝐹 ( ⟨ 𝐶 , 𝐷 ⟩ Lan 𝐸 ) 𝑋 ) → ⟨ 𝐿 , 𝐴 ⟩ ∈ ( ( ⟨ 𝐷 , 𝐸 ⟩ −∘F 𝐹 ) ( ( 𝐷 FuncCat 𝐸 ) UP ( 𝐶 FuncCat 𝐸 ) ) 𝑋 ) )
8 3 7 syl ( 𝜑 → ⟨ 𝐿 , 𝐴 ⟩ ∈ ( ( ⟨ 𝐷 , 𝐸 ⟩ −∘F 𝐹 ) ( ( 𝐷 FuncCat 𝐸 ) UP ( 𝐶 FuncCat 𝐸 ) ) 𝑋 ) )
9 df-br ( 𝐿 ( ( ⟨ 𝐷 , 𝐸 ⟩ −∘F 𝐹 ) ( ( 𝐷 FuncCat 𝐸 ) UP ( 𝐶 FuncCat 𝐸 ) ) 𝑋 ) 𝐴 ↔ ⟨ 𝐿 , 𝐴 ⟩ ∈ ( ( ⟨ 𝐷 , 𝐸 ⟩ −∘F 𝐹 ) ( ( 𝐷 FuncCat 𝐸 ) UP ( 𝐶 FuncCat 𝐸 ) ) 𝑋 ) )
10 8 9 sylibr ( 𝜑𝐿 ( ( ⟨ 𝐷 , 𝐸 ⟩ −∘F 𝐹 ) ( ( 𝐷 FuncCat 𝐸 ) UP ( 𝐶 FuncCat 𝐸 ) ) 𝑋 ) 𝐴 )
11 10 up1st2nd ( 𝜑𝐿 ( ⟨ ( 1st ‘ ( ⟨ 𝐷 , 𝐸 ⟩ −∘F 𝐹 ) ) , ( 2nd ‘ ( ⟨ 𝐷 , 𝐸 ⟩ −∘F 𝐹 ) ) ⟩ ( ( 𝐷 FuncCat 𝐸 ) UP ( 𝐶 FuncCat 𝐸 ) ) 𝑋 ) 𝐴 )
12 4 fucbas ( 𝐷 Func 𝐸 ) = ( Base ‘ ( 𝐷 FuncCat 𝐸 ) )
13 11 12 uprcl4 ( 𝜑𝐿 ∈ ( 𝐷 Func 𝐸 ) )