| Step |
Hyp |
Ref |
Expression |
| 1 |
|
lanrcl2.l |
|- ( ph -> L ( F ( <. C , D >. Lan E ) X ) A ) |
| 2 |
|
df-br |
|- ( L ( F ( <. C , D >. Lan E ) X ) A <-> <. L , A >. e. ( F ( <. C , D >. Lan E ) X ) ) |
| 3 |
1 2
|
sylib |
|- ( ph -> <. L , A >. e. ( F ( <. C , D >. Lan E ) X ) ) |
| 4 |
|
eqid |
|- ( D FuncCat E ) = ( D FuncCat E ) |
| 5 |
|
eqid |
|- ( C FuncCat E ) = ( C FuncCat E ) |
| 6 |
|
eqid |
|- ( <. D , E >. -o.F F ) = ( <. D , E >. -o.F F ) |
| 7 |
4 5 6
|
islan |
|- ( <. L , A >. e. ( F ( <. C , D >. Lan E ) X ) -> <. L , A >. e. ( ( <. D , E >. -o.F F ) ( ( D FuncCat E ) UP ( C FuncCat E ) ) X ) ) |
| 8 |
3 7
|
syl |
|- ( ph -> <. L , A >. e. ( ( <. D , E >. -o.F F ) ( ( D FuncCat E ) UP ( C FuncCat E ) ) X ) ) |
| 9 |
|
df-br |
|- ( L ( ( <. D , E >. -o.F F ) ( ( D FuncCat E ) UP ( C FuncCat E ) ) X ) A <-> <. L , A >. e. ( ( <. D , E >. -o.F F ) ( ( D FuncCat E ) UP ( C FuncCat E ) ) X ) ) |
| 10 |
8 9
|
sylibr |
|- ( ph -> L ( ( <. D , E >. -o.F F ) ( ( D FuncCat E ) UP ( C FuncCat E ) ) X ) A ) |
| 11 |
10
|
up1st2nd |
|- ( ph -> L ( <. ( 1st ` ( <. D , E >. -o.F F ) ) , ( 2nd ` ( <. D , E >. -o.F F ) ) >. ( ( D FuncCat E ) UP ( C FuncCat E ) ) X ) A ) |
| 12 |
4
|
fucbas |
|- ( D Func E ) = ( Base ` ( D FuncCat E ) ) |
| 13 |
11 12
|
uprcl4 |
|- ( ph -> L e. ( D Func E ) ) |