Metamath Proof Explorer


Theorem latasymd

Description: Deduce equality from lattice ordering. ( eqssd analog.) (Contributed by NM, 18-Nov-2011)

Ref Expression
Hypotheses latasymd.b B=BaseK
latasymd.l ˙=K
latasymd.3 φKLat
latasymd.4 φXB
latasymd.5 φYB
latasymd.6 φX˙Y
latasymd.7 φY˙X
Assertion latasymd φX=Y

Proof

Step Hyp Ref Expression
1 latasymd.b B=BaseK
2 latasymd.l ˙=K
3 latasymd.3 φKLat
4 latasymd.4 φXB
5 latasymd.5 φYB
6 latasymd.6 φX˙Y
7 latasymd.7 φY˙X
8 1 2 latasymb KLatXBYBX˙YY˙XX=Y
9 3 4 5 8 syl3anc φX˙YY˙XX=Y
10 6 7 9 mpbi2and φX=Y