Metamath Proof Explorer
		
		
		
		Description:  Deduce equality from lattice ordering.  ( eqssd analog.)  (Contributed by NM, 18-Nov-2011)
		
			
				
					|  |  | Ref | Expression | 
					
						|  | Hypotheses | latasymd.b |  | 
					
						|  |  | latasymd.l |  | 
					
						|  |  | latasymd.3 |  | 
					
						|  |  | latasymd.4 |  | 
					
						|  |  | latasymd.5 |  | 
					
						|  |  | latasymd.6 |  | 
					
						|  |  | latasymd.7 |  | 
				
					|  | Assertion | latasymd |  | 
			
		
		
			
				Proof
				
					
						| Step | Hyp | Ref | Expression | 
						
							| 1 |  | latasymd.b |  | 
						
							| 2 |  | latasymd.l |  | 
						
							| 3 |  | latasymd.3 |  | 
						
							| 4 |  | latasymd.4 |  | 
						
							| 5 |  | latasymd.5 |  | 
						
							| 6 |  | latasymd.6 |  | 
						
							| 7 |  | latasymd.7 |  | 
						
							| 8 | 1 2 | latasymb |  | 
						
							| 9 | 3 4 5 8 | syl3anc |  | 
						
							| 10 | 6 7 9 | mpbi2and |  |