Metamath Proof Explorer


Theorem latlem

Description: Lemma for lattice properties. (Contributed by NM, 14-Sep-2011)

Ref Expression
Hypotheses latlem.b B=BaseK
latlem.j ˙=joinK
latlem.m ˙=meetK
Assertion latlem KLatXBYBX˙YBX˙YB

Proof

Step Hyp Ref Expression
1 latlem.b B=BaseK
2 latlem.j ˙=joinK
3 latlem.m ˙=meetK
4 simp1 KLatXBYBKLat
5 simp2 KLatXBYBXB
6 simp3 KLatXBYBYB
7 opelxpi XBYBXYB×B
8 7 3adant1 KLatXBYBXYB×B
9 1 2 3 islat KLatKPosetdom˙=B×Bdom˙=B×B
10 simprl KPosetdom˙=B×Bdom˙=B×Bdom˙=B×B
11 9 10 sylbi KLatdom˙=B×B
12 11 3ad2ant1 KLatXBYBdom˙=B×B
13 8 12 eleqtrrd KLatXBYBXYdom˙
14 1 2 4 5 6 13 joincl KLatXBYBX˙YB
15 simprr KPosetdom˙=B×Bdom˙=B×Bdom˙=B×B
16 9 15 sylbi KLatdom˙=B×B
17 16 3ad2ant1 KLatXBYBdom˙=B×B
18 8 17 eleqtrrd KLatXBYBXYdom˙
19 1 3 4 5 6 18 meetcl KLatXBYBX˙YB
20 14 19 jca KLatXBYBX˙YBX˙YB