Metamath Proof Explorer


Theorem latmmdir

Description: Lattice meet distributes over itself. ( inindir analog.) (Contributed by NM, 6-Jun-2012)

Ref Expression
Hypotheses olmass.b B=BaseK
olmass.m ˙=meetK
Assertion latmmdir KOLXBYBZBX˙Y˙Z=X˙Z˙Y˙Z

Proof

Step Hyp Ref Expression
1 olmass.b B=BaseK
2 olmass.m ˙=meetK
3 ollat KOLKLat
4 3 adantr KOLXBYBZBKLat
5 simpr3 KOLXBYBZBZB
6 1 2 latmidm KLatZBZ˙Z=Z
7 4 5 6 syl2anc KOLXBYBZBZ˙Z=Z
8 7 oveq2d KOLXBYBZBX˙Y˙Z˙Z=X˙Y˙Z
9 simpl KOLXBYBZBKOL
10 simpr1 KOLXBYBZBXB
11 simpr2 KOLXBYBZBYB
12 1 2 latm4 KOLXBYBZBZBX˙Y˙Z˙Z=X˙Z˙Y˙Z
13 9 10 11 5 5 12 syl122anc KOLXBYBZBX˙Y˙Z˙Z=X˙Z˙Y˙Z
14 8 13 eqtr3d KOLXBYBZBX˙Y˙Z=X˙Z˙Y˙Z