Metamath Proof Explorer
		
		
		
		Description:  A lattice ordering is reflexive.  ( ssid analog.)  (Contributed by NM, 8-Oct-2011)
		
			
				
					|  |  | Ref | Expression | 
					
						|  | Hypotheses | latref.b |  | 
					
						|  |  | latref.l |  | 
				
					|  | Assertion | latref |  | 
			
		
		
			
				Proof
				
					
						| Step | Hyp | Ref | Expression | 
						
							| 1 |  | latref.b |  | 
						
							| 2 |  | latref.l |  | 
						
							| 3 |  | latpos |  | 
						
							| 4 | 1 2 | posref |  | 
						
							| 5 | 3 4 | sylan |  |