Metamath Proof Explorer


Theorem latref

Description: A lattice ordering is reflexive. ( ssid analog.) (Contributed by NM, 8-Oct-2011)

Ref Expression
Hypotheses latref.b B=BaseK
latref.l ˙=K
Assertion latref KLatXBX˙X

Proof

Step Hyp Ref Expression
1 latref.b B=BaseK
2 latref.l ˙=K
3 latpos KLatKPoset
4 1 2 posref KPosetXBX˙X
5 3 4 sylan KLatXBX˙X