Metamath Proof Explorer


Theorem lble

Description: If a set of reals contains a lower bound, the lower bound is less than or equal to all members of the set. (Contributed by NM, 9-Oct-2005) (Proof shortened by Mario Carneiro, 24-Dec-2016)

Ref Expression
Assertion lble SxSySxyASιxS|ySxyA

Proof

Step Hyp Ref Expression
1 lbreu SxSySxy∃!xSySxy
2 nfcv _xS
3 nfriota1 _xιxS|ySxy
4 nfcv _x
5 nfcv _xy
6 3 4 5 nfbr xιxS|ySxyy
7 2 6 nfralw xySιxS|ySxyy
8 eqid ιxS|ySxy=ιxS|ySxy
9 nfra1 yySxy
10 nfcv _yS
11 9 10 nfriota _yιxS|ySxy
12 11 nfeq2 yx=ιxS|ySxy
13 breq1 x=ιxS|ySxyxyιxS|ySxyy
14 12 13 ralbid x=ιxS|ySxyySxyySιxS|ySxyy
15 7 8 14 riotaprop ∃!xSySxyιxS|ySxySySιxS|ySxyy
16 1 15 syl SxSySxyιxS|ySxySySιxS|ySxyy
17 16 simprd SxSySxyySιxS|ySxyy
18 nfcv _y
19 nfcv _yA
20 11 18 19 nfbr yιxS|ySxyA
21 breq2 y=AιxS|ySxyyιxS|ySxyA
22 20 21 rspc ASySιxS|ySxyyιxS|ySxyA
23 17 22 mpan9 SxSySxyASιxS|ySxyA
24 23 3impa SxSySxyASιxS|ySxyA