Description: If a set of reals contains a lower bound, the lower bound is less than or equal to all members of the set. (Contributed by NM, 9-Oct-2005) (Proof shortened by Mario Carneiro, 24-Dec-2016)
Ref | Expression | ||
---|---|---|---|
Assertion | lble | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lbreu | |
|
2 | nfcv | |
|
3 | nfriota1 | |
|
4 | nfcv | |
|
5 | nfcv | |
|
6 | 3 4 5 | nfbr | |
7 | 2 6 | nfralw | |
8 | eqid | |
|
9 | nfra1 | |
|
10 | nfcv | |
|
11 | 9 10 | nfriota | |
12 | 11 | nfeq2 | |
13 | breq1 | |
|
14 | 12 13 | ralbid | |
15 | 7 8 14 | riotaprop | |
16 | 1 15 | syl | |
17 | 16 | simprd | |
18 | nfcv | |
|
19 | nfcv | |
|
20 | 11 18 19 | nfbr | |
21 | breq2 | |
|
22 | 20 21 | rspc | |
23 | 17 22 | mpan9 | |
24 | 23 | 3impa | |