Metamath Proof Explorer


Theorem lbsex

Description: Every vector space has a basis. This theorem is an AC equivalent. (Contributed by Mario Carneiro, 25-Jun-2014)

Ref Expression
Hypothesis lbsex.j J=LBasisW
Assertion lbsex WLVecJ

Proof

Step Hyp Ref Expression
1 lbsex.j J=LBasisW
2 axac3 CHOICE
3 1 lbsexg CHOICEWLVecJ
4 2 3 mpan WLVecJ