Metamath Proof Explorer


Theorem lbsind2

Description: A basis is linearly independent; that is, every element is not in the span of the remainder of the basis. (Contributed by Mario Carneiro, 25-Jun-2014) (Revised by Mario Carneiro, 12-Jan-2015)

Ref Expression
Hypotheses lbsind2.j J = LBasis W
lbsind2.n N = LSpan W
lbsind2.f F = Scalar W
lbsind2.o 1 ˙ = 1 F
lbsind2.z 0 ˙ = 0 F
Assertion lbsind2 W LMod 1 ˙ 0 ˙ B J E B ¬ E N B E

Proof

Step Hyp Ref Expression
1 lbsind2.j J = LBasis W
2 lbsind2.n N = LSpan W
3 lbsind2.f F = Scalar W
4 lbsind2.o 1 ˙ = 1 F
5 lbsind2.z 0 ˙ = 0 F
6 simp1l W LMod 1 ˙ 0 ˙ B J E B W LMod
7 simp2 W LMod 1 ˙ 0 ˙ B J E B B J
8 simp3 W LMod 1 ˙ 0 ˙ B J E B E B
9 eqid Base W = Base W
10 9 1 lbsel B J E B E Base W
11 7 8 10 syl2anc W LMod 1 ˙ 0 ˙ B J E B E Base W
12 eqid W = W
13 9 3 12 4 lmodvs1 W LMod E Base W 1 ˙ W E = E
14 6 11 13 syl2anc W LMod 1 ˙ 0 ˙ B J E B 1 ˙ W E = E
15 3 lmodring W LMod F Ring
16 eqid Base F = Base F
17 16 4 ringidcl F Ring 1 ˙ Base F
18 6 15 17 3syl W LMod 1 ˙ 0 ˙ B J E B 1 ˙ Base F
19 simp1r W LMod 1 ˙ 0 ˙ B J E B 1 ˙ 0 ˙
20 9 1 2 3 12 16 5 lbsind B J E B 1 ˙ Base F 1 ˙ 0 ˙ ¬ 1 ˙ W E N B E
21 7 8 18 19 20 syl22anc W LMod 1 ˙ 0 ˙ B J E B ¬ 1 ˙ W E N B E
22 14 21 eqneltrrd W LMod 1 ˙ 0 ˙ B J E B ¬ E N B E