Database
BASIC LINEAR ALGEBRA
Vectors and free modules
Independent sets and families
lbslinds
Next ⟩
islinds3
Metamath Proof Explorer
Ascii
Unicode
Theorem
lbslinds
Description:
A basis is independent.
(Contributed by
Stefan O'Rear
, 24-Feb-2015)
Ref
Expression
Hypothesis
lbslinds.j
⊢
J
=
LBasis
⁡
W
Assertion
lbslinds
⊢
J
⊆
LIndS
⁡
W
Proof
Step
Hyp
Ref
Expression
1
lbslinds.j
⊢
J
=
LBasis
⁡
W
2
eqid
⊢
Base
W
=
Base
W
3
eqid
⊢
LSpan
⁡
W
=
LSpan
⁡
W
4
2
1
3
islbs4
⊢
a
∈
J
↔
a
∈
LIndS
⁡
W
∧
LSpan
⁡
W
⁡
a
=
Base
W
5
4
simplbi
⊢
a
∈
J
→
a
∈
LIndS
⁡
W
6
5
ssriv
⊢
J
⊆
LIndS
⁡
W