Metamath Proof Explorer


Theorem lbslinds

Description: A basis is independent. (Contributed by Stefan O'Rear, 24-Feb-2015)

Ref Expression
Hypothesis lbslinds.j J = LBasis W
Assertion lbslinds J LIndS W

Proof

Step Hyp Ref Expression
1 lbslinds.j J = LBasis W
2 eqid Base W = Base W
3 eqid LSpan W = LSpan W
4 2 1 3 islbs4 a J a LIndS W LSpan W a = Base W
5 4 simplbi a J a LIndS W
6 5 ssriv J LIndS W