Metamath Proof Explorer


Theorem lbslsp

Description: Any element of a left module M can be expressed as a linear combination of the elements of a basis V of M . (Contributed by Thierry Arnoux, 3-Aug-2023)

Ref Expression
Hypotheses lbslsp.v B = Base M
lbslsp.k K = Base S
lbslsp.s S = Scalar M
lbslsp.z 0 ˙ = 0 S
lbslsp.t · ˙ = M
lbslsp.m φ M LMod
lbslsp.1 φ V LBasis M
Assertion lbslsp φ X B a K V finSupp 0 ˙ a X = M v V a v · ˙ v

Proof

Step Hyp Ref Expression
1 lbslsp.v B = Base M
2 lbslsp.k K = Base S
3 lbslsp.s S = Scalar M
4 lbslsp.z 0 ˙ = 0 S
5 lbslsp.t · ˙ = M
6 lbslsp.m φ M LMod
7 lbslsp.1 φ V LBasis M
8 eqid LBasis M = LBasis M
9 eqid LSpan M = LSpan M
10 1 8 9 lbssp V LBasis M LSpan M V = B
11 7 10 syl φ LSpan M V = B
12 11 eleq2d φ X LSpan M V X B
13 1 8 lbsss V LBasis M V B
14 7 13 syl φ V B
15 9 1 2 3 4 5 6 14 ellspds φ X LSpan M V a K V finSupp 0 ˙ a X = M v V a v · ˙ v
16 12 15 bitr3d φ X B a K V finSupp 0 ˙ a X = M v V a v · ˙ v