Metamath Proof Explorer


Theorem ellspds

Description: Variation on ellspd . (Contributed by Thierry Arnoux, 18-May-2023)

Ref Expression
Hypotheses ellspds.n N = LSpan M
ellspds.v B = Base M
ellspds.k K = Base S
ellspds.s S = Scalar M
ellspds.z 0 ˙ = 0 S
ellspds.t · ˙ = M
ellspds.m φ M LMod
ellspds.1 φ V B
Assertion ellspds φ X N V a K V finSupp 0 ˙ a X = M v V a v · ˙ v

Proof

Step Hyp Ref Expression
1 ellspds.n N = LSpan M
2 ellspds.v B = Base M
3 ellspds.k K = Base S
4 ellspds.s S = Scalar M
5 ellspds.z 0 ˙ = 0 S
6 ellspds.t · ˙ = M
7 ellspds.m φ M LMod
8 ellspds.1 φ V B
9 f1oi I V : V 1-1 onto V
10 f1of I V : V 1-1 onto V I V : V V
11 9 10 mp1i φ I V : V V
12 11 8 fssd φ I V : V B
13 2 fvexi B V
14 13 a1i φ B V
15 14 8 ssexd φ V V
16 1 2 3 4 5 6 12 7 15 ellspd φ X N I V V a K V finSupp 0 ˙ a X = M a · ˙ f I V
17 ssid V V
18 resiima V V I V V = V
19 17 18 mp1i φ I V V = V
20 19 fveq2d φ N I V V = N V
21 20 eleq2d φ X N I V V X N V
22 elmapfn a K V a Fn V
23 22 adantl φ a K V a Fn V
24 9 10 mp1i φ a K V I V : V V
25 24 ffnd φ a K V I V Fn V
26 15 adantr φ a K V V V
27 inidm V V = V
28 eqidd φ a K V v V a v = a v
29 fvresi v V I V v = v
30 29 adantl φ a K V v V I V v = v
31 23 25 26 26 27 28 30 offval φ a K V a · ˙ f I V = v V a v · ˙ v
32 31 oveq2d φ a K V M a · ˙ f I V = M v V a v · ˙ v
33 32 eqeq2d φ a K V X = M a · ˙ f I V X = M v V a v · ˙ v
34 33 anbi2d φ a K V finSupp 0 ˙ a X = M a · ˙ f I V finSupp 0 ˙ a X = M v V a v · ˙ v
35 34 rexbidva φ a K V finSupp 0 ˙ a X = M a · ˙ f I V a K V finSupp 0 ˙ a X = M v V a v · ˙ v
36 16 21 35 3bitr3d φ X N V a K V finSupp 0 ˙ a X = M v V a v · ˙ v