Metamath Proof Explorer


Theorem lcfls1c

Description: Property of a functional with a closed kernel. (Contributed by NM, 28-Jan-2015)

Ref Expression
Hypotheses lcfls1.c C = f F | ˙ ˙ L f = L f ˙ L f Q
lcfls1c.c D = f F | ˙ ˙ L f = L f
Assertion lcfls1c G C G D ˙ L G Q

Proof

Step Hyp Ref Expression
1 lcfls1.c C = f F | ˙ ˙ L f = L f ˙ L f Q
2 lcfls1c.c D = f F | ˙ ˙ L f = L f
3 df-3an G F ˙ ˙ L G = L G ˙ L G Q G F ˙ ˙ L G = L G ˙ L G Q
4 1 lcfls1lem G C G F ˙ ˙ L G = L G ˙ L G Q
5 2 lcfl1lem G D G F ˙ ˙ L G = L G
6 5 anbi1i G D ˙ L G Q G F ˙ ˙ L G = L G ˙ L G Q
7 3 4 6 3bitr4i G C G D ˙ L G Q