Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Norm Megill
Construction of involution and inner product from a Hilbert lattice
lcfls1c
Next ⟩
lclkrslem1
Metamath Proof Explorer
Ascii
Unicode
Theorem
lcfls1c
Description:
Property of a functional with a closed kernel.
(Contributed by
NM
, 28-Jan-2015)
Ref
Expression
Hypotheses
lcfls1.c
⊢
C
=
f
∈
F
|
⊥
˙
⁡
⊥
˙
⁡
L
⁡
f
=
L
⁡
f
∧
⊥
˙
⁡
L
⁡
f
⊆
Q
lcfls1c.c
⊢
D
=
f
∈
F
|
⊥
˙
⁡
⊥
˙
⁡
L
⁡
f
=
L
⁡
f
Assertion
lcfls1c
⊢
G
∈
C
↔
G
∈
D
∧
⊥
˙
⁡
L
⁡
G
⊆
Q
Proof
Step
Hyp
Ref
Expression
1
lcfls1.c
⊢
C
=
f
∈
F
|
⊥
˙
⁡
⊥
˙
⁡
L
⁡
f
=
L
⁡
f
∧
⊥
˙
⁡
L
⁡
f
⊆
Q
2
lcfls1c.c
⊢
D
=
f
∈
F
|
⊥
˙
⁡
⊥
˙
⁡
L
⁡
f
=
L
⁡
f
3
df-3an
⊢
G
∈
F
∧
⊥
˙
⁡
⊥
˙
⁡
L
⁡
G
=
L
⁡
G
∧
⊥
˙
⁡
L
⁡
G
⊆
Q
↔
G
∈
F
∧
⊥
˙
⁡
⊥
˙
⁡
L
⁡
G
=
L
⁡
G
∧
⊥
˙
⁡
L
⁡
G
⊆
Q
4
1
lcfls1lem
⊢
G
∈
C
↔
G
∈
F
∧
⊥
˙
⁡
⊥
˙
⁡
L
⁡
G
=
L
⁡
G
∧
⊥
˙
⁡
L
⁡
G
⊆
Q
5
2
lcfl1lem
⊢
G
∈
D
↔
G
∈
F
∧
⊥
˙
⁡
⊥
˙
⁡
L
⁡
G
=
L
⁡
G
6
5
anbi1i
⊢
G
∈
D
∧
⊥
˙
⁡
L
⁡
G
⊆
Q
↔
G
∈
F
∧
⊥
˙
⁡
⊥
˙
⁡
L
⁡
G
=
L
⁡
G
∧
⊥
˙
⁡
L
⁡
G
⊆
Q
7
3
4
6
3bitr4i
⊢
G
∈
C
↔
G
∈
D
∧
⊥
˙
⁡
L
⁡
G
⊆
Q