Metamath Proof Explorer


Theorem lclkrlem2i

Description: Lemma for lclkr . Eliminate the ( LE ) =/= ( LG ) hypothesis. (Contributed by NM, 17-Jan-2015)

Ref Expression
Hypotheses lclkrlem2f.h H=LHypK
lclkrlem2f.o ˙=ocHKW
lclkrlem2f.u U=DVecHKW
lclkrlem2f.v V=BaseU
lclkrlem2f.s S=ScalarU
lclkrlem2f.q Q=0S
lclkrlem2f.z 0˙=0U
lclkrlem2f.a ˙=LSSumU
lclkrlem2f.n N=LSpanU
lclkrlem2f.f F=LFnlU
lclkrlem2f.j J=LSHypU
lclkrlem2f.l L=LKerU
lclkrlem2f.d D=LDualU
lclkrlem2f.p +˙=+D
lclkrlem2f.k φKHLWH
lclkrlem2f.b φBV0˙
lclkrlem2f.e φEF
lclkrlem2f.g φGF
lclkrlem2f.le φLE=˙X
lclkrlem2f.lg φLG=˙Y
lclkrlem2f.kb φE+˙GB=Q
lclkrlem2f.nx φ¬X˙B¬Y˙B
lclkrlem2i.x φXV0˙
lclkrlem2i.y φYV0˙
Assertion lclkrlem2i φ˙˙LE+˙G=LE+˙G

Proof

Step Hyp Ref Expression
1 lclkrlem2f.h H=LHypK
2 lclkrlem2f.o ˙=ocHKW
3 lclkrlem2f.u U=DVecHKW
4 lclkrlem2f.v V=BaseU
5 lclkrlem2f.s S=ScalarU
6 lclkrlem2f.q Q=0S
7 lclkrlem2f.z 0˙=0U
8 lclkrlem2f.a ˙=LSSumU
9 lclkrlem2f.n N=LSpanU
10 lclkrlem2f.f F=LFnlU
11 lclkrlem2f.j J=LSHypU
12 lclkrlem2f.l L=LKerU
13 lclkrlem2f.d D=LDualU
14 lclkrlem2f.p +˙=+D
15 lclkrlem2f.k φKHLWH
16 lclkrlem2f.b φBV0˙
17 lclkrlem2f.e φEF
18 lclkrlem2f.g φGF
19 lclkrlem2f.le φLE=˙X
20 lclkrlem2f.lg φLG=˙Y
21 lclkrlem2f.kb φE+˙GB=Q
22 lclkrlem2f.nx φ¬X˙B¬Y˙B
23 lclkrlem2i.x φXV0˙
24 lclkrlem2i.y φYV0˙
25 15 adantr φLE=LGKHLWH
26 23 adantr φLE=LGXV0˙
27 17 adantr φLE=LGEF
28 18 adantr φLE=LGGF
29 19 adantr φLE=LGLE=˙X
30 simpr φLE=LGLE=LG
31 1 2 3 4 7 10 12 13 14 25 26 27 28 29 30 lclkrlem2e φLE=LG˙˙LE+˙G=LE+˙G
32 15 adantr φLELGKHLWH
33 16 adantr φLELGBV0˙
34 17 adantr φLELGEF
35 18 adantr φLELGGF
36 19 adantr φLELGLE=˙X
37 20 adantr φLELGLG=˙Y
38 21 adantr φLELGE+˙GB=Q
39 22 adantr φLELG¬X˙B¬Y˙B
40 23 adantr φLELGXV0˙
41 24 adantr φLELGYV0˙
42 simpr φLELGLELG
43 1 2 3 4 5 6 7 8 9 10 11 12 13 14 32 33 34 35 36 37 38 39 40 41 42 lclkrlem2h φLELG˙˙LE+˙G=LE+˙G
44 31 43 pm2.61dane φ˙˙LE+˙G=LE+˙G