Metamath Proof Explorer


Theorem lcmfnncl

Description: Closure of the _lcm function. (Contributed by AV, 20-Apr-2020)

Ref Expression
Assertion lcmfnncl ZZFinlcm_Z

Proof

Step Hyp Ref Expression
1 id ZZ
2 nnssz
3 1 2 sstrdi ZZ
4 3 adantr ZZFinZ
5 simpr ZZFinZFin
6 0nnn ¬0
7 ssel Z0Z0
8 6 7 mtoi Z¬0Z
9 df-nel 0Z¬0Z
10 8 9 sylibr Z0Z
11 10 adantr ZZFin0Z
12 lcmfn0cl ZZFin0Zlcm_Z
13 4 5 11 12 syl3anc ZZFinlcm_Z