Metamath Proof Explorer


Theorem lcvntr

Description: The covers relation is not transitive. ( cvntr analog.) (Contributed by NM, 10-Jan-2015)

Ref Expression
Hypotheses lcvnbtwn.s S=LSubSpW
lcvnbtwn.c C=LW
lcvnbtwn.w φWX
lcvnbtwn.r φRS
lcvnbtwn.t φTS
lcvnbtwn.u φUS
lcvnbtwn.d φRCT
lcvntr.p φTCU
Assertion lcvntr φ¬RCU

Proof

Step Hyp Ref Expression
1 lcvnbtwn.s S=LSubSpW
2 lcvnbtwn.c C=LW
3 lcvnbtwn.w φWX
4 lcvnbtwn.r φRS
5 lcvnbtwn.t φTS
6 lcvnbtwn.u φUS
7 lcvnbtwn.d φRCT
8 lcvntr.p φTCU
9 1 2 3 4 5 7 lcvpss φRT
10 1 2 3 5 6 8 lcvpss φTU
11 9 10 jca φRTTU
12 3 adantr φRCUWX
13 4 adantr φRCURS
14 6 adantr φRCUUS
15 5 adantr φRCUTS
16 simpr φRCURCU
17 1 2 12 13 14 15 16 lcvnbtwn φRCU¬RTTU
18 17 ex φRCU¬RTTU
19 11 18 mt2d φ¬RCU