Metamath Proof Explorer


Theorem ldual1

Description: The unit scalar of the dual of a vector space. (Contributed by NM, 26-Feb-2015)

Ref Expression
Hypotheses ldual1.r R=ScalarW
ldual1.u 1˙=1R
ldual1.d D=LDualW
ldual1.s S=ScalarD
ldual1.i I=1S
ldual1.w φWLMod
Assertion ldual1 φI=1˙

Proof

Step Hyp Ref Expression
1 ldual1.r R=ScalarW
2 ldual1.u 1˙=1R
3 ldual1.d D=LDualW
4 ldual1.s S=ScalarD
5 ldual1.i I=1S
6 ldual1.w φWLMod
7 eqid opprR=opprR
8 1 7 3 4 6 ldualsca φS=opprR
9 8 fveq2d φ1S=1opprR
10 7 2 oppr1 1˙=1opprR
11 9 5 10 3eqtr4g φI=1˙