Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Norm Megill
Opposite rings and dual vector spaces
ldual1
Next ⟩
ldualneg
Metamath Proof Explorer
Ascii
Unicode
Theorem
ldual1
Description:
The unit scalar of the dual of a vector space.
(Contributed by
NM
, 26-Feb-2015)
Ref
Expression
Hypotheses
ldual1.r
⊢
R
=
Scalar
⁡
W
ldual1.u
⊢
1
˙
=
1
R
ldual1.d
⊢
D
=
LDual
⁡
W
ldual1.s
⊢
S
=
Scalar
⁡
D
ldual1.i
⊢
I
=
1
S
ldual1.w
⊢
φ
→
W
∈
LMod
Assertion
ldual1
⊢
φ
→
I
=
1
˙
Proof
Step
Hyp
Ref
Expression
1
ldual1.r
⊢
R
=
Scalar
⁡
W
2
ldual1.u
⊢
1
˙
=
1
R
3
ldual1.d
⊢
D
=
LDual
⁡
W
4
ldual1.s
⊢
S
=
Scalar
⁡
D
5
ldual1.i
⊢
I
=
1
S
6
ldual1.w
⊢
φ
→
W
∈
LMod
7
eqid
⊢
opp
r
⁡
R
=
opp
r
⁡
R
8
1
7
3
4
6
ldualsca
⊢
φ
→
S
=
opp
r
⁡
R
9
8
fveq2d
⊢
φ
→
1
S
=
1
opp
r
⁡
R
10
7
2
oppr1
⊢
1
˙
=
1
opp
r
⁡
R
11
9
5
10
3eqtr4g
⊢
φ
→
I
=
1
˙